A Comparative Study of Fabrication of Long Wavelength Diode Lasers Using CCl2F2/O2 and H2/CH4

Abstract

We report comparatively on fabrication of two-section ridge-waveguide tapered 3 quantum well (QW) InGaAsP/InP (1300 nm) and 5 QW AlGaInAs/InP (1550 nm) diode lasers. Gas mixtures of CCl2F2/O2 and H2/CH4 were used to form ridge-waveguide on the lasers with InP-based material structures. As known, chlorine- and hydro-carbon based gases are used to fabricate ridge-waveguide structures. Here, we show the difference between the structures obtained by using the both gas mixtures in which surface and sidewall structures as well as performance of the lasers were analysed using scanning electron microscopy. It is demonstrated that gas mixtures of CCl2F2/O2 highly deteriorated the etched structures although different flow rates, rf powers and base pressures were tried. We also show that the structures etched with H2/CH4 gas mixtures produced much better results that led to the successful fabrication of two-section devices with ridge-waveguide. The lasers fabricated using H2/CH4 were characterized using output power-current (P-I) and spectral results.

Share and Cite:

B. Cakmak, M. Biber, T. Karacali and C. Duman, "A Comparative Study of Fabrication of Long Wavelength Diode Lasers Using CCl2F2/O2 and H2/CH4," Optics and Photonics Journal, Vol. 3 No. 2B, 2013, pp. 21-24. doi: 10.4236/opj.2013.32B005.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] D. E. Ibbotson and D. L. Flamm, “Plasma Etching for III-V Compound Devices.2,” Solid State Technology, Vol. 31, 1988, p. 105.
[2] J. W. Lee, J. Hong, C. R. Abernathy, E. S. Lambers, S. J. Pearton, W. S. Hobson and F. Ren, “Cl2/Ar Plasma Etching of Binary, Ternary, and Quaternary In-Based Compound Semiconductors,” Journal of Vacuum Science & Technology B, Vol. 14, No. 4, 1996, pp. 2567-2573. doi:10.1116/1.588769
[3] J. Hommel, M. Moser, M. Geiger, F. Scholz and H. Schwiser, “Investigations of Dry Etching in AlGaInP/GaInP Using CCl2F2/Ar Reactive Ion Etching and Ar Ion Beam Etching,” Journal of Vacuum Science & Technology B, Vol. 9, No. 6, 1991, pp. 3526-3529. doi:10.1116/1.585837
[4] S. Allen and P. Silverberg, “Methane-Hydrogen III-V Metal-Organic Reactive Ion Etching,” Semiconductor Science and Technology, Vol. 6, 1991, pp. 287-289. doi:10.1088/0268-1242/6/4/010
[5] J. W. Mcnabb, H. G. Craighead, H. Temkin and R. A. Logan, “Anisotropic Rective Ion Etching of InP in Methane/Hydrogen Based Plasmas,” Journal of Vacuum Science & Technology B, Vol. 9, No. 6, 1991, pp. 3535-3537. doi:10.1116/1.585839
[6] Y. Yuba, K. Gamo, H. Toba, X. G. He and S. Namba, “Ion Beam Etching of InP. I. Ar Ion Beam Etching and Fabrication of Grating for Integrated Circuits,” Japanese. Journal of Applied Physics, Vol. 22, No. 7, 1983, pp. 1206-1210. doi:10.1143/JJAP.22.1206
[7] R. A. Mikhnev, S. K. Shtandel, M. I. Martynov and E. D. Olshanskii, “How Ion-Beam Etching Affects the Surface Quality of Optical Articles,” Journal of Optical Technology, Vol. 66, No. 12, 1999, pp.1032-1034. doi:10.1364/JOT.66.001032
[8] W. Katzschner, U. Niggebrugge, R. Lofflerr and H. Schroter-Janssen, H., “Reactive ion beam etching of InP with N2 and N2/O2 mixtures,” Applied Physics Letters, Vol. 48, No. 3, 1986, pp. 230-232. doi:10.1063/1.96566
[9] F. Frost, A. Schindler and F. Bigl, “Reactive Ion Beam Etching of InSb and InAs with Ultrasmooth Surfaces,” Semiconductor Science and Technology, Vol. 13, 1998, pp. 523-527. doi:10.1088/0268-1242/13/5/014
[10] Bharadwaj, L. M., Bonhomme, P., Faure, J., Balossier, G., and Bajpai, R. P., “Chemically Assisted Ion Beam Etching of InP and InSb using Reactive Flux of Iodine and Ar+ Beam,” Journal of Vacuum Science & Technology B, Vol. 9, No. 3, 1991, pp. 1440-1444. doi:10.1116/1.585447
[11] J. Daleiden, K. Czotscher, C. Hoffmann, R. Kiefer, S. Klussmann, S. Muller, A. Nutsch, W. Pletschen, S. Weisser, G. Trankle, J. Braunstein and G. Weimann, “Sidewall Slope Control of Chemically Assisted Ion-Beam Etched Structures in InP-Based Materials,” Journal of Vacuum Science & Technology B, Vol. 16, No. 4, 1998, pp. 1864-1866. doi:10.1116/1.590099
[12] S. Bouchoule, L. Vallier, T. Chevolleau and C. Cardinaud, “Effect of Cl2- and HBr-based Inductively Coupled Plasma Etching on InP Surface Composition Analyzed Using in Situ X-Ray Photoelectron Spectroscopy,” Journal of Vacuum Science & Technology A, Vol. 30, No. 3, 2012, pp. 31301-31312.
[13] J. Hommel, M. Moser, M. Geiger, F. Scholz and H. Schwiser, “Investigations of Dry Etching in AlGaInP/GaInP Using CCl2F2/Ar Reactive Ion Etching and Ar Ion Beam Etching,” Journal of Vacuum Science & Technology B, Vol. 9, No. 6, 1991, pp. 3526-3529. doi:10.1116/1.585837
[14] J. W. Lee, J. Hong, C. R. Abernathy, E. S. Lambers, S. J. Pearton, W. S. Hobson and F. Ren,“Cl2/Ar Plasma Etching of Binary, Ternary, and Quaternary In-Based Compound Semiconductors,” Journal of Vacuum Science & Technology B, Vol. 14, No. 4, 1996, pp. 2567-2573. doi:10.1116/1.588769
[15] S. Allen and P. Silverberg, “Methane-Hydrogen III-V Metal-Organic Reactive Ion Etching,” Semiconductor Science and Technology, Vol. 6, 1991, pp. 287-289. doi:10.1088/0268-1242/6/4/010
[16] J. W. Mcnabb, H. G. Craighead, H. Temkin and R. A. Logan, “Anisotropic Rective Ion Etching of InP in Methane/Hydrogen Based Plasmas,” Journal of Vacuum Science & Technology B, Vol. 9, No. 6, 1991, pp. 3535-3537. doi:10.1116/1.585839
[17] B. Cakmak, T. Karacali and M. Biber, “Investigation of Q-Switched InP-Based 1550 nm Semiconductor Lasers,” Optics and Laser Technology, Vol. 44, 2012, pp. 1593-1597. doi:10.1016/j.optlastec.2011.11.043

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.