Structure and Mechanical Behavior of Cellulose Nanofiber and Micro-Fibrils by Molecular Dynamics Simulation


Cellulose nanofiber (CNF) and CNF micro-fibrils (CNF-MFs) are computationally modeled by molecular dynamics with united atom (UA) methodology of polymers. Structural stability and mechanical properties of these materials are focused on. Diffusion coefficient decreases with increase of the number of shells in CNF-MF. The structure of CNF-MFs with crystalline alignment is totally stabilized with twist which is an accumulation of torsion angles at Glycosidic bonds between monomers inside CNFs. Unique fiber drawing simulation, where a single CNF fiber is taken out of CNF-MF structure, is first conducted. The CNF fiber which is drawn out stretches up to relatively large strain, with linear increase of tensile stress. The computation results show that, the larger the number of shell structure of CNF-MF is, the larger the stretch and the stress of drawn fibers are.

Share and Cite:

K. Saitoh, H. Ohno and S. Matsuo, "Structure and Mechanical Behavior of Cellulose Nanofiber and Micro-Fibrils by Molecular Dynamics Simulation," Soft Nanoscience Letters, Vol. 3 No. 3, 2013, pp. 58-67. doi: 10.4236/snl.2013.33011.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] D. Klemm, H. P. Schmauder and T. Heinze, “Cellulose,” In: S. De Baets, E. Vandamme and A. Steinbüchel, Eds., Biopolymers, Vol. 6, Wiley-VCH, Weinheim, 2001, pp. 275-287.
[2] Cellulose Gakkai, “Cellulose no Jiten,” (in Japanese) Asakura Syoten, Tokyo, 2000. pp. 219-253.
[3] M. Nogi, S. Iwamoto, A. N. Nakagaito and H. Yano, “Optically Transparent Nanofiber Paper,” Advanced Materials, Vol. 21, No. 16, 2009, pp. 1595-1598. doi:10.1002/adma.200803174
[4] T. Nishino, I. Matsuda and K. Hirao, “All-Cellulose Composite,” Macromolecules, Vol. 37, No. 20, 2004, pp. 7683-7687. doi:10.1021/ma049300h
[5] J. Buehler, “Nanomechanics of Collagen Fibrils under Varying Coss-Link,” Journal of the Mechanical Behavior of Biomedical Materials, Vol. 1, No. 1, 2008, pp. 59-67. doi:10.1016/j.jmbbm.2007.04.001
[6] Q. Pu, Y. Leng, L. Tsetseris, H. S. Park, S. T. Pantelides and P. T. Cummings, “Molecular Dynamics Simulations of Stretched Gold Nanowires: The Relative Utility of Different Semiempirical Potentials,” Journal of Chemical Physics, Vol. 126, No. 14, 2007, Article ID. 144707. doi:10.1063/1.2717162
[7] L. Hui and F. Pederiva, “Helical Multishell Structures of Magnesium Nanowires,” Journal of Applied Physics, Vol. 96, No. 4, 2004, pp. 2214-2220. doi:10.1063/1.1765866
[8] D. Li, Y. Wu, P. Kim, L. Shi, P. Yang and A. Majumdar, “Thermal Conductivity of Individual Silicon Nanowires,” Applied Physics Letters, Vol. 83, No. 14, 2003, pp. 2934-2396. doi:10.1063/1.1616981
[9] S. Neyertz, A. Pizzi, A. Merlin, B. Maigret, D. Brown and X. Deglise, “A New All-Atom Force Field for Crystalline Cellulose I,” Journal of Applied Polymer Science, Vol. 78, No. 11, 2000, pp.1939-1946. doi:10.1063/1.468791
[10] J. F. Matthews, C. E. Skopec, P. E. Mason, P. Zuccato, R. W. Torget, J. Sugiyama, M. E. Himmel and J. W. Brady, “Computer Simulation Studies of Microcrystalline Cellulose I,” Carbohydrate Research, Vol. 341, No. 1, 2006, pp. 138-152. doi:10.1016/j.carres.2005.09.028
[11] H. Miyamoto, M. Umemura, T. Aoyagi, C. Yamane, K. Ueda and K. Takahashi, “Structural Reorganization of Molecular Sheets Derived from Cellulose II by Molecular Dynamics Simulations,” Carbohydrate Research, Vol. 344, No. 9, 2009, pp. 1085-1094. doi:10.1016/j.carres.2009.03.014
[12] K. H. Meyer and L. Misch, “Positions des Atomes Dans le Nouveau Modèle Spatial de la Cellulose,” Helvetica Chimica Acta, Vol. 20, No. 1, 1937, pp. 232-244. doi:10.1002/hlca.19370200134
[13] H. Fukunaga, J. Takimoto and M. Doi, “A Coarse-Graining Procedure for Flexible Polymer Chains with Bonded and Nonbonded Interactions,” Journal of Chemical Physics, Vol. 116, No. 18, 2002, pp. 8183-8190. doi:10.1063/1.1469609
[14] T. Kinjo and S. Hyodo, “Equation of Motion for Coarse-Grained Simulation Based on Microscopic Description,” Physical Review E, Vol. 75, No. 5, 2007, pp. 1-9. doi:10.1103/PhysRevE.75.051109
[15] “CHARMM force field”
[16] D. A. Pearlman , D. A. Case, J. W. Caldwell, W. S. Ross, T. E. Cheatham III, S. DeBolt, D. Ferguson, G. Seibel and P, Kollman, “AMBER, a Package of Computer Programs for Applying Molecular Mechanics, Normal Mode Analysis, Molecular Dynamics and Free Energy Calculations to Simulate the Structural and Energetic Properties of Molecules,” Computer Physics Communications, Vol. 91, No. 1-3, 1995, pp. 1-41. doi:10.1016/0010-4655(95)00041-D
[17] J. Sugiyama, “Crystal Structure of Cellulose-Personal Overview of the Main Stream Idea,” Sen’i Gakkaishi, (in Japanese) Vol. 62, No. 7, 2006, pp. 183-187. doi:10.2115/fiber.62.P_183
[18] M. P. Allen and D. J. Tildesley, “Computer Simulation of Liquids,” Oxford University Press, Oxford, 1989.
[19] M. Valizadeh, S. A. H. Ravandi, M. Salimi and M. Sheikhzadeh, “Determination of Internal Mechanical Characteristics of Woven Fabrics Using the Force-balance Analysis of Yarn Pullout Test,” Journal of the Textle Institute, Vol. 99, No. 1, 2008, pp. 47-55. doi:10.1080/00405000701567712
[20] Y. C. Fung and P. Tong, “Classical and Computational Solid Mechanics,” World Scientific, Singapore, 2001.

Copyright © 2023 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.