Intravascular infusion of autologous delipidated plasma induces antiatherogenic lipoproteins and causes regression of atherosclerosis
—Studies in non-primates, monkeys and humans


Atherosclerosis is the primary pathophysiological cause of heart disease and cerebrovascular disease. It is responsible for more than 20% of deaths worldwide each year. Treatments for atherosclerosis may include lifestyle changes, drugs, and medical procedures or surgery. There is a need for a rapid and effective treatment for this disease. In 1976, it was hypothesized that a multifunctional plasma delipidation process when applied to hyperlipidemic patients would lead to rapid regression of atherosclerosis. The procedure has now been applied to a variety of non-primates, primates and humans. In all models studied, large quantities of antiatherogenic lipoprotein particles were generated that led to the mechanisms of reverse cholesterol transport. Trends to regression and actual regression of atherosclerosis have now been reported using a specific plasma delipidation process consisting of lipid extraction from plasma with mixtures of butanol and ethers.

Share and Cite:

Cham, B. and Chase, T. (2013) Intravascular infusion of autologous delipidated plasma induces antiatherogenic lipoproteins and causes regression of atherosclerosis
—Studies in non-primates, monkeys and humans. Health, 5, 19-33. doi: 10.4236/health.2013.57A1003.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] CSL Company Reports. 2012. Citi Research.
[2] Libby, P. (2002) Inflammation in atherosclerosis. Nature, 420, 858-874. doi:10.1038/nature01323
[3] Spady, D.K. (1999) Reverse Cholesterol transport and atherosclerosis regression. Circulation, 100, 576-578. doi:10.1161/01.CIR.100.6.576
[4] Heart Protection Study Collaborative Group (2002) MRC/ BHF Heart Protection Study of cholesterol lowering with simvastatin in 20,536 high-risk individuals: A randomized placebo-controlled trial. Lancet, 360, 7-22. doi:10.1016/S0140-6736(02)09327-3
[5] Castelli, W.P., Anderson, K., Wilson, P.W. and Levy, D. (1992) Lipids and risk of coronary heart disease: The Framingham Study. American Epidemiology, 2, 23-28. doi:10.1016/1047-2797(92)90033-M
[6] Cham, B.E., Owen, P., Roeser, H.P., Gaffney, T. and Stanley, B.C. (1981) Heterogeneity of lipoprotein B. Biochemical and Biophysical Research Communications, 103, 196-206. doi:10.1016/0006-291X(81)91679-X
[7] Cham, B.E. (1978) Importance of apolipoproteins in lipid metabolism. Chemico-Biological Interactions, 20, 263-277. doi:10.1016/0009-2797(78)90105-9
[8] Cham, B.E. and Knowles, B.R. (1976) A solvent system for delipidation of plasma or serum without protein precipitation. Journal Lipid Research, 17, 176-181.
[9] Cham, B.E. (2007) Manipulation of reverse cholesterol transport system—An exploration for rapid regression of atherosclerosis. Research Journal Biological Sciences, 2, 291-300.
[10] Cham, B.E. and Knowles, B.R. (1976) Changes in electrophoretic mobilities of alpha and beta lipoproteins as a result of plasma delipidation. Clinical Chemistry, 22, 305-309.
[11] Curry, M.D., Alaupovic, P. and Suenram, C.A. (1976) Determination of apolipoprotein A and its constitutive A-I and A-II polypeptides by separate electroimmunoassays. Clinical Chemistry, 22, 315-322.
[12] Avogaro, P., Cazzolato, G., Bittolo Bon, G., Quinci, G.B. and Chinello, M. (1978) HDL cholesterol apolipoproteins A1 and B. Atherosclerosis, 31, 85-91. doi:10.1016/0021-9150(78)90040-0
[13] Kostner, G.M., Avogaro, P., Bittolo Bon, G., Cazzolato, G and Quinci, G.B. (1979) Determination of high-density lipoproteins; screening methods compared. Clinical Chemistry, 25, 939-942.
[14] Jaukiainen, M.S., Laitinen, M.V., Pentilla, I.M. and Pukakainen, E.V. (1982) Separation of the apoprotein components of human serum high-density lipoprotein: Chromatofocusing a new simple technique. Clinica Chimica Acta, 122, 85-91. doi:10.1016/0009-8981(82)90099-7
[15] Koren, E., Puchois, P., McConathy, W.J., Fesmire, J.D. and Alaupovic, P. (1985) Quantitative determination of human plasma apolipoprotein A-I by noncompetitive enzyme-linked immunosorbent assay. Clinica Chimica Acta, 147, 85-95. doi:10.1016/0009-8981(85)90068-3
[16] Koren, E., Puchois, P., Alaupovic, P., Fesmire, J., Kandorissi, A. and Fruchart, J.C. (1987) Quantification of two different types of apolipoprotein A-I containing lipoprotein particles in plasma by enzyme-linked differentialantibody immunosorbent assay. Clinical Chemistry, 33, 38-43.
[17] Trigatti, B.L., Rigotti, A. and Braun, A. (2000) Cellular and physiological roles of SR-B1 a lipoprotein receptor which mediates selective lipid uptake. Biochimica Biophysica Acta, 1529, 276-286. doi:10.1016/S1388-1981(00)00154-2
[18] Staprans, I. and Felts, J.M. (1977) The effect of alphaacid glycoprotein (orosomucoid) on triglyceride metabolism in the nephrotic syndrome. BiochemicalBiophysical Research Communications, 79, 1272-1278. doi:10.1016/0006-291X(77)91143-3
[19] Curry, M.D., McConathy, W.J., Fesmire, J.D. and Alaupovic, P. (1980) Quantitative determination of human apolipoprotein C-III by electroimmunoassay. Biochimica Biophysica Acta, 617, 503-513. doi:10.1016/0005-2760(80)90016-8
[20] Curry, M.D., McConathy, W.J., Fesmire, J.D. and Alaupovic, P. (1981) Apolipoprotein C-I and C-II levels in human plasma by separate electroimmunoassays. Clinical Chemistry, 27, 543-548.
[21] Curry, M.D., McConathy, W.J. and Alaupovic, P. (1977) Quantitative determination of human apolipoprotein D by electroimmunoassay and radial immune-diffusion. Biochimica Biophysica Acta, 491, 232-241. doi:10.1016/0005-2795(77)90059-9
[22] Meunier, S., Gambert, P. and Desgres, J. (1986) Preparative electrophoresis of human apolipoprotein E: An improved method. Journal Lipid Research, 27, 1324-1327.
[23] Pattnaik, N.M., Montes, A., Hughesand, L.B. and Zilversmit, D.M. (1978) Cholesteryl ester exchange protein in human plasma isolation and characterization. Biochimica Biophysica Acta, 530, 428-438. doi:10.1016/0005-2760(78)90163-7
[24] Fex, G. and Hansson, B. (1978) Purification of retinol-binding protein from serum and urine by affinity chromatography. Biochimica Biophysica Acta, 537, 358-365. doi:10.1016/0005-2795(78)90519-6
[25] Rustow, B., Kunze, D., Hodi, J. and Egger, E. (1979) A fatty acid binding peptide of rat liver cytosol. FEBS Letters, 108, 469-472. doi:10.1016/0014-5793(79)80590-6
[26] Ockner, R.K., Manning, J.A. and Kane, J.P. (1982) Fatty acid binding protein. Journal Biological Chemistry, 257, 7872-7878.
[27] Groener, J.E.M., Van Rozen, A.E. and Erkelens, D.W. (1984) Cholesteryl ester transfer activity. Localization and role in the distribution of cholesteryl ester among lipoproteins in man. Atherosclerosis, 50, 261-271. doi:10.1016/0021-9150(84)90074-1
[28] Groener, J.E.M., Pelton, R.W. and Kostner, G.M. (1986) Improved estimation of cholesteryl ester transfer/exchange activity in serum or plasma. Clinical Chemistry, 32, 283-286.
[29] Cham, B.E. and Knowles, B.R. (1976) In vitro partial relipidation of apolipoprotein in plasma. Journal Biological Chemistry, 251, 6167-6171.
[30] Slater, H.R. and Robertson, F.W. (1979) A comparison of delipidated sera used in studies of sterol synthesis by human mononuclear lenkocytes. Journal Lipid Research, 20, 413-416.
[31] Shakespeare, V. and Postle, A.D. (1979) Regulation of cholesterol synthesis in skin fibroblasts derived from old people. Atherosclerosis, 33, 359-364. doi:10.1016/0021-9150(79)90187-4
[32] Wong, C.G. and Ladisch, S. (1983) Retention of gangliosides in serum delipidated by diisopropyl ether-butanol extraction. Journal Lipid Research, 24, 666-669.
[33] Prokazova, S.V., Mikhailenko, I.A., Preobrazhensky, S.N., Ivanov, V.O., Prokrovsky, S.N., Timofeeva, N.G., et al. (1986) Interaction of ganliosides with plasma low-density lipoproteins. Glycoconjugate Journal, 3, 273-286. doi:10.1007/BF01051777
[34] Slater, H.R., Smith, E.B. and Roberston, F.W. (1980) The effect of delipidated high-density lipoprotein on human leukocyte sterol synthesis. Atherosclerosis, 35, 41-49. doi:10.1016/0021-9150(80)90026-X
[35] Innerarity, T.L. and Mahley, R.W. (1978) Enhanced binding by cultured human fibroblasts of apo-E-containing lipoproteins as compared with low-density lipoproteins. Biochemistry, 17, 1440-1447. doi:10.1021/bi00601a013
[36] Cham, B.E., Kostner, K.M., Dwivedy, A.K., Shafey, T.M., Fang, N.X. and Mahon, M.G. (1995) Lipid apheresis: An in vivo application of plasma delipidation with organic solvents resulting in acute transient reduction of circulating plasma lipids in animals. Journal Clinical Apheresis, 10, 61-69. doi:10.1002/jca.2920100202
[37] Cham, B.E., Kostner, K.M., Dwivedy, A.K., Shafey, T.M., Fang, N.X. and Mahon, M.G. (1996) Lipid apheresis in an animal model causes in vivo changes in lipoprotein electrophoretic patterns. Journal Clinical Apheresis, 11, 61-70. doi:10.1002/(SICI)1098-1101(1996)11:2<61::AID-JCA2>3.0.CO;2-8
[38] Cham, B.E. and Smith, J.L. (1994) Lipid apheresis in an animal model causes acute reduction in plasma lipid concentrations and mobilization of lipid from liver and aorta. Pharmacology Life Science Advances, 13, 25-32.
[39] Kostner, K.M., Smith, J.L., Dwivedy, A.K. and Shafey, T.M., et al. (1997) Lecithin cholesterol acyltransferase activity in normocholesterolemic and hypercholesterolemic roosters: Modulation by lipid apheresis. European Journal Clinical Investigation, 27, 212-218. doi:10.1046/j.1365-2362.1997.960643.x
[40] Barter, P.J., Hopkins, G.J. and Gorjatschko, L. (1985) Lipoprotein substrates for plasma cholesterol esterification. Influence of particle size and composition of the lipoproteinsubfraction 3. Atherosclerosis, 58, 97-107. doi:10.1016/0021-9150(85)90058-9
[41] Jonas, A. and McHugh, H.T. (1984) Reaction of lecithin: Cholesterol acyltransferase with micellar substrates. Effect of particle size. Biochimica Biophysica Acta, 794, 361-372. doi:10.1016/0005-2760(84)90002-X
[42] Cham, B.E., Kostner, K.M., Shafey, T.M., Smith, J.L. and Colquhoun, D.M. (2005) Plasma delipidation process induces rapid regression of atherosclerosis and mobilization of adipose tissue. Journal Clinical Apheresis, 20, 143-153. doi:10.1002/jca.20060
[43] Kostner, K.M., Cham, B.E., Dwivedy, A.K., Shafey, T.M. and Fang, N.X. (1992) Increase of apo A1 concentration in hypercholesterolemic chickens after treatment with newly developed extracorporeal lipid elimination. 11th International Symposium on Drugs Affecting Lipid Metabolism, 13-16 May, Italy.
[44] Sacks, F.M., Rudel, L.L., Conner, A., Keefe, A., Kostner, G., Baki, T., et al. (2009) Selective delipidation of plasma HDL enhances reverse cholesterol transport in vivo. Journal Lipid Research, 50, 894-907. doi:10.1194/jlr.M800622-JLR200
[45] Waksman, R., Torguson, R., Kent, K.M., Pichard, A.D., Suddath, W.O., Satler, L.F., et al. (2010) A first-in-man, randomized, placebo-controlled study to evaluate the safety and feasibility of autologous delipidated high-density lipoprotein plasma infusions in patients with acute coronary syndrome. Journal American College Cardiology, 55, 2727-2735. doi:10.1016/j.jacc.2009.12.067
[46] Tardif, J.C., Grégoire, J., L’Allier, P.L., Ibrahim, R., Lespérance, J. and Heinonen, T.M., et al. (2007) Effect of rHDL on atherosclerosis-safety and efficacy (ERASE). Effects of reconstituted high-density lipoprotein infusion on coronary atherosclerosis: A randomized controlled trial. JAMA, 297, 1675-1682. doi:10.1001/jama.297.15.jpc70004
[47] Nissen, S.E., Tsunoda, T., Tuzcu, E.M., Schoenhagen, P., et al. (2003) Effect of recombinant apo A-I Milano on coronary atherosclerosis in patients with acute coronary syndromes. A randomized controlled trial. JAMA, 290, 2292-2300. doi:10.1001/jama.290.17.2292
[48] Davidson, M.H. (2011) Apolipoprotein A-1 therapy. Promise, challenges and disappointment. Journal American College Cardiology, 57, 1120-1121. doi:10.1016/j.jacc.2010.11.025
[49] Gordon, S.M., Deng, J., Lu, L.J. and Davidson, W.S. (2010) Proteomic characterization of human plasma high-density lipoprotein fractionated by gel filtration chromatography. Journal Proteome Research, 9, 5239-5249. doi:10.1021/pr100520x
[50] Nguyen, A.D., Nguyen, T.A., Cenik, B., Yu, G., Herz, J., Walther, T.C., et al. (2013) Secreted progranulin is a homodimer and is not a component of high-density lipoproteins (HDL). Journal Biological Chemistry, 288, 8627-8635. doi:10.1074/jbc.M112.441949
[51] Kim, H.Y., Tallman, K.A., Liebler, D.C. and Porter, N.A. (2009) An azido-biotin reagent for use in the isolation of protein adducts of lipid-derived electrophiles by streptavidin catch and photorelease. Molecular Cell Proteomics, 8, 2080-2089. doi:10.1074/mcp.M900121-MCP200
[52] Rezaee, F., Casetta, B., Levels, J.H.M., Speijer, D. and Meijers, J.C.M. (2006) Proteomic analysis of high-density lipoprotein. Proteomics, 6, 721-730. doi:10.1002/pmic.200500191

Copyright © 2023 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.