Pulse-Impact on Microstructure of Liquid-Phase-Pulse-Impact Diffusion Welded Joints of Particle Reinforcement Aluminum Matrix Composites at Various Temperatures

Abstract

Investigation was to study the influence of pulse-impact on microstructure of Liquid-Phase-Pulse-Impact Diffusion Welding (LPPIDW) welded joints of aluminum matrix composite SiCp/A356, SiCp/6061Al, Al2O3p/6061Al. Results showed that under the effect of pulse-impact: 1) the interface state between reinforcement particle (SiC, Al2O3) and matrix was prominently; 2) the initial pernicious contact-state of reinforcement particles was changed from reinforcement (SiC, Al2O3)/reinforcement (SiC, Al2O3) to reinforcement (SiC, Al2O3)/matrix/ reinforcement (SiC, Al2O3); 3) the density of dislocation in the matrix neighboring to and away from the interface in the matrix was higher than its parent composite; and 4) the intensively mutual entwisting of dislocation was occurred. Studies illustrated that: 1) deformation was mainly occurred in the matrix grain; and 2) under the effect of pulse-impact, the matrices around reinforcement (SiC, Al2O3) particles engendered intensive aberration offered a high density nucleus area for matrix crystal, which was in favor of forming nano-grains and improved the properties of the successfully welded composite joints.

Share and Cite:

K. Guo, "Pulse-Impact on Microstructure of Liquid-Phase-Pulse-Impact Diffusion Welded Joints of Particle Reinforcement Aluminum Matrix Composites at Various Temperatures," Engineering, Vol. 5 No. 7, 2013, pp. 567-576. doi: 10.4236/eng.2013.57069.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] S. V. Nair, J. K. Tien and R. C. Bates, “SiC-Reinforced Aluminium Metal Matrix Composites,” International Metals Reviews, Vol. 30, No. 6, 1995, pp. 275-288.
[2] A. Pirondi and L. Collini, “Analysis of Crack Propagation Resistance of Al-Al2O3 Particulate-Reinforced Composite Friction Stir Welded Butt Joints,” International Journal of Fatigue, Vol. 31, No. 1, 2009, pp. 111-121. doi:10.1016/j.ijfatigue.2008.05.003
[3] F. Rotundo, L. Ceschini, A. Morri, T. S. Jun and A. M. Korsunsky, “Mechanical and Microstructural Characterization of 2124Al/25 vol% SiCp Joints Obtained by Linear Friction Welding (LFW),” Composite Part A: Applied Science and Manufacturing, Vol. 41, No. 9, 2010, pp. 1028-1037. doi:10.1016/j.compositesa.2010.03.009
[4] J. M. G. de Salazar and M. I. Barrena, “Dissimilar Fusion Welding of AA7020/MMC Reinforced with Al2O3 Particles. Microstructure and Mechanical Properties,” Materials Science and Engineering A, Vol. 352, 2003, pp. 162-168.
[5] D. J. Loyd, “Particle Reinforced Aluminum Magnesium Composites,” International Materials Reviews, Vol. 39, No. 1, 1994, pp. 1-22. doi:10.1179/095066094790150982
[6] J. Maity, T. K. Pal and R. Maiti, “Transient Liquid Phase Diffusion Bonding of 6061-15 wt% SiCp in Argon Environment,” Journal of Materials Processing Technology, Vol. 209, No. 7, 2009, pp. 3568-3580. doi:10.1016/j.jmatprotec.2008.08.015
[7] J. S. U. Schell, J. Guilleminot, C. Binetruy and P. Krawczak, “Computational and Experimental Analysis of Fusion Bonding in Thermoplastic Composites: Influence of Process Parameters,” Journal of Materials Processing Technology, Vol. 209, No. 11, 2009, pp. 5211-5219. doi:10.1016/j.jmatprotec.2009.03.008
[8] N. S. Sundaram and N. Murugan, “Tensile Behavior of Dissimilar Friction Stir Welded Joints of Aluminum Alloys,” Materials & Design, Vol. 31, No. 9, 2010, pp. 4184-4193. doi:10.1016/j.matdes.2010.04.035
[9] H. Arik, M. Aydin, A. Kurt and M. Turker, “Weldability of Al4C3-Al Composites via Diffusion Welding Technique,” Materials & Design, Vol. 26, No. 6, 2005, pp. 555-560. doi:10.1016/j.matdes.2004.07.017
[10] American Welding Society, “Welding Handbook,” American Welding Society, Miami, 1996.
[11] A. H. Feng, B. L. Xiao and Z. Y. Ma, “Effect of Micro structural Evolution on Mechanical Properties of Friction Stir Welded AA2009/SiCp Composite,” Composites Science and Technology, Vol. 68, No. 9, 2008, pp. 2141-2148. doi:10.1016/j.compscitech.2008.03.010
[12] J. A. Wert, “Microstructures of Friction Stir Weld Joints between an Aluminium-Base Metal Matrix Composite and a Monolithic Aluminium Alloy,” Scripta Materialia, Vol. 49, No. 6, 2003, pp. 607-612. doi:10.1016/S1359-6462(03)00215-X
[13] G. J. Fernandez and L. E. Murr, “Characterization of Tool Wear and Weld Optimization in the Friction-Stir Welding of Cast Aluminum 359 + 20% SiC Metal-Matrix Composite,” Materials Characterization, Vol. 52, No. 1, 2004, pp. 65-75. doi:10.1016/j.matchar.2004.03.004
[14] C. J. Hsu, P. W. Kao and N. J. Ho, “Ultrafine-Grained Al-Al2Cu Composite Produced In-Situ by Friction Stir Processing,” Scripta Materialia, Vol. 53, No. 3, 2005, pp. 341-345. doi:10.1016/j.scriptamat.2005.04.006
[15] L. M. Marzoli, A. V. Strombeck, J. F. Dos Santos, C. Gambaro and L. M. Volpone, “Friction Stir Welding of an AA6061/Al2O3/20p Reinforced Alloy,” Composites Science and Technology, Vol. 66, No. 2, 2006, pp. 363-371. doi:10.1016/j.compscitech.2005.04.048
[16] W. Guo, M. Hua and J. K. L. Ho, “Study on Liquid Phase-Impact Diffusion Welding SiCp/ZL101,” Composites Science and Technology, Vol. 67, No. 6, 2007, pp. 1041-1046. doi:10.1016/j.compscitech.2006.06.006
[17] W. Guo, M. Hua, J. K. L. Ho and H. W. Law, “Mechanism and Influence of Pulse-Impact on Properties of Liquid Phase Pulse-Impact Diffusion Welded SiCp/A356,” The International Journal of Advanced Manufacturing Technology, Vol. 40, No. 9-10, 2008, pp. 898-906. doi:10.1007/s00170-008-1411-y
[18] W. Guo, M. Hua, H. W. Law and J. K. Lim Ho, “Liquid Phase Impact Diffusion Welding of SiCp/6061Al and Its Mechanism,” Materials Science and Engineering A, Vol. 490, No. 1-2, 2008, pp. 427-437. doi:10.1016/j.msea.2008.01.058

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.