Synthesis and Characterization of Air-Stable Elemental Fe Thin Films by Chemical Vapor Deposition of Fe3(CO)12

DOI: 10.4236/jsemat.2013.33029   PDF   HTML     3,278 Downloads   5,138 Views   Citations


New magnetic air-stable nanogranular Fe thin films of 10 ± 1.2 nm thickness were prepared onto silicon wafers at 150℃ under inert atmosphere by controlled Chemical Vapor Deposition (CVD) of triiron dodecacarbonyl (Fe3(CO)12). These thin films, composed of sintered elemental Fe nanoparticles of 4.1 ± 0.7 nm diameter, are protected from air oxidation by a very thin carbon layer. The saturation magnetization of these thin Fe coatings was found to be close to that of bulk iron. The electrical resistivity behavior of the ferromagnetic thin films is similar to that of a semiconductor. In the present manuscript, these Fe thin coatings on Si wafers have been used as a catalyst for synthesizing crystalline carbon nanotubes (CNTs), by CVD using ethylene as a carbon precursor.

Share and Cite:

Mero, O. , Shpaisman, N. , Grinblat, J. and Margel, S. (2013) Synthesis and Characterization of Air-Stable Elemental Fe Thin Films by Chemical Vapor Deposition of Fe3(CO)12. Journal of Surface Engineered Materials and Advanced Technology, 3, 217-223. doi: 10.4236/jsemat.2013.33029.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] I. Corrales-Mendoza, A. Conde-Gallardo and V. M. Sanchez-Resendiz, “Nd(1-x)Fe(x)OF Thin Films Deposited by Chemical Vapor Deposition and Their Arsenic Diffusion,” IEEE Transactions on Applied Superconductivity, Vol. 21, No. 3, 2011, pp. 2849-2852. doi:10.1109/TASC.2010.2084983
[2] M. L. Hitchman and K. F. Jensen, “Chemical Vapor Deposition, in: Principles and Applications,” Academic Press, London, San Diego, 1993, p. 677.
[3] Y. H. Low, M. F. Bain, D. C. S. Bien, J. H. Montgomery, B. M. Armstrong and H. S. Gamble, “Selective Deposition of CVD Iron on Silicon Dioxide and Tungsten,” Microelectronic Engineering, Vol. 83, No. 11-12, 2006, pp. 2229-2233. doi:10.1016/j.mee.2006.10.008
[4] Q. P. Wei, Z. M. Yu, M. N. R. Ashfold, Z. Chen, L. Wang and L. Ma, “Effects of Thickness and Cycle Parameters on Fretting Wear Behavior of CVD Diamond Coatings on Steel Substrates,” Surface & Coatings Technology, Vol. 205, No. 1, 2010, pp. 158-167. doi:10.1016/j.surfcoat.2010.06.026
[5] Z. W. Liu and C. K. Ong, “Microstructure and Thickness Dependent Magnetic Properties of Nanogranular Co-Zn-O Thin Films FOr Microwave Applications,” Journal of Alloys and Compounds, Vol. 509, No. 41, 2011, pp. 10075-10079. doi:10.1016/j.jallcom.2011.08.039
[6] S. F. Zhang and P. M. Levy, “Conductivity and Magnetoresistance in Magnetic Granular Films,” Journal of Applied Physics, Vol. 73, No. 10, 1993, pp. 5315-5319. doi:10.1063/1.353766
[7] F. S. Hung, F. Y. Hung and C. M. Chiang, “Crystallization and Annealing Effects of Sputtered tin Alloy Films on Electromagnetic Interference Shielding,” Applied Surface Science, Vol. 257, No. 8, 2011, pp. 3733-3738. doi:10.1016/j.apsusc.2010.11.126
[8] S. S. Azim, A. Satheesh, K. K. Ramu, S. Ramu and G. Venkatachari, “Studies on Graphite Based Conductive Paint Coatings,” Progress in Organic Coatings, Vol. 55, No. 1, 2006, pp. 1-4. doi:10.1016/j.porgcoat.2005.09.001
[9] E. Sutter, p. Albrecht, F. E. Camino and P. Sutter, “Monolayer Graphene as Ultimate Chemical Passivation Layer for Arbitrarily Shaped Metal Surfaces,” Carbone, Vol. 48, No. 15, 2010, pp. 4414-4420. doi:10.1016/j.carbon.2010.07.058
[10] Y. Wang, H. Gao, R. Yeredla, H. Xu and M. Abrecht, “Preparation of Iron Particles Coated with Silica,” Journal of Colloid and Interface Science, Vol. 217, No. 1, 1999, pp. 203-207.
[11] F. Jay, V. Gauthier and S. Dubois, “Iron Particles Coated with Alumina: Synthesis by a Mechanofusion Process and Study of the High-Temperature Oxidation Resistance,” Journal of the American Ceramic Society, Vol. 89, No. 11, 2006, pp. 3522-3528.
[12] M. Gaillard, C. Boulmer-leborgne, N. Semmar and E. Millon, A. Petit, “Carbon Nanotube Growth from Metallic Nanoparticles Deposited by Pulsed-Laser Deposition on Different Substrates,” Applied Surface Science, Vol. 258, No. 23, 2012, p. 9237. doi:10.1016/j.apsusc.2011.12.115
[13] P. Avouris, J. Appenzeller, R. Martel and S. J. Wind, “Carbon Nanotube Electronics,” Proceedings of the IEEE, Vol. 91, No. 11, 2003, pp. 1772-1784. doi:10.1109/JPROC.2003.818338
[14] B. J. Landi, M. J. Ganter, C. D. Cress, R. A. DiLeo and R. P. Raffaelle, “Carbon Nanotubes for Lithium Ion Batteries,” Energy & Environmental Science, Vol. 2, No. 6, 2009, pp. 638-654. doi:10.1039/b904116h
[15] B. L. Ellis, K. T. Lee and L. F. Nazar, “Positive Electrode Materials for Li-Ion and Li-Batteries,” Chemistry of Materials, Vol. 22, No. 3, 2010, pp. 691-714. doi:10.1021/cm902696j
[16] M. Inagaki, H. Konno and O. Tanaike, “Carbon Materials for Electrochemical Capacitors,” Journal of Power Sources, Vol. 195, No. 24, 2010, pp. 7880-7903. doi:10.1016/j.jpowsour.2010.06.036
[17] J. N. Coleman, U. Khan, W. J. Blau and Y. K. Gun’ko, “Small But Strong: A Review of the Mechanical Properties of Carbon Nanotube-Polymer Composites,” Carbon, Vol. 44, No. 9, 2006, pp. 1624-1652. doi:10.1016/j.carbon.2006.02.038
[18] V. N. Popov, “Carbon Nanotubes: Properties and Application,” Materials Science & Engineering R-Reports, Vol. 43, No. 3, 2004, pp. 61-102. doi:10.1016/j.mser.2003.10.001
[19] M. Paradise and T. Goswami, “Carbon Nanotubes—Production and Industrial Applications,” Materials & Design, Vol. 28, No. 5, 2007, pp. 1477-1489. doi:10.1016/j.matdes.2006.03.008
[20] A. M. Cassell, J. A. Raymakers, J. Kong, H. J. Dai, “Large Scale CVD Synthesis of Single-Walled Carbon Nanotubes,” Journal of Physical Chemistry B, Vol. 103, No. 31, 1999, pp. 6484-6492. doi:10.1021/jp990957s
[21] P. Chen, H. B. Zhang, G. D. Lin, Q. Hong and K. R. Tsai, “Growth of Carbon Nanotubes by Catalytic Decomposition of CH4 or CO on a Ni-MgO Catalyst,” Carbon, Vol. 35, No. 10-11, 1997, pp. 1495-1501. doi:10.1016/S0008-6223(97)00100-0
[22] T. de los Arcos, F. Vonau, M. G. Garnier, V. Thommen, H. G. Boyen, P. Oelhafen, M. Duggelin, D. Mathis and R. Guggenheim, “Influence of Iron-Silicon Interaction on the Growth of Carbon Nanotubes Produced by Chemical Vapor Deposition,” Applied Physics Letters, Vol. 80, No. 13, 2002, pp. 2383-2385. doi:10.1063/1.1465529
[23] G. D. Nessim, A. Al-Obeidi, H. Grisaru, E. S. Polsen, C. R. Oliver, T. Zimrin, A. J. Hart, D. Aurbach and C. V. Thompson, “Synthesis of Tall Carpets of Vertically Aligned Carbon Nanotubes by In-Situ Generation Of Water Vapor through Preheating of Added Oxygen,” Carbon, Vol. 50, No. 11, 2012, pp. 4002-4009. doi:10.1016/j.carbon.2012.04.043
[24] R. M. Bozorth, “Ferromagnetism (Chapter XII),” D. Van Nostrand Company, New York, 1951.
[25] Q. W. Chen, Y. T. Qian, Z. Y. Chen, Y. Xie, G. E. Zhou and Y. H. Zhang, “Hydrothermal Deposition of Magnetite (Fe3O4) Thin-Films,” Materials Letters, Vol. 24, No. 1-3, 1995, pp. 85-87. doi:10.1016/0167-577X(95)00081-X
[26] Y. Qi, K. Sakai and H. Murakami, “Thickness Effect on Sheet Resistance in BSCCO Mixed Crystal Thin Film,” Journal of Low Temperature Physics, Vol. 117, No. 3-4, 1999, pp. 669-673.
[27] A. Kanda, S. Katsumoto and S. Kobayashi, “Charge-Soliton Transport-Properties in 2-Dimensional Array of Small Josephson-Junctions,” Journal of the Physical Society of Japan, Vol. 63, No. 12, 1994, pp. 4306-4309. doi:10.1143/JPSJ.63.4306
[28] J. Siegel, O. Lyutakov, V. Rybka, Z. Kolska and V. Svorcik, “Properties of Gold Nanostructures Sputtered on Glass,” Nanoscale Research Letters, Vol. 6, 2011, p. 96. doi:10.1186/1556-276X-6-96
[29] G. D. Nessim, “Carbon Nanotube Synthesis with Special Focus on Thermal Chemical Vapor Deposition,” Nanoscale, Vol. 2, No. 8, 2010, pp. 1306-1323. doi:10.1039/b9nr00427k

comments powered by Disqus

Copyright © 2020 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.