Molecular Adsorption and Desorption Behavior on Silicon Surface in a Complex Ambient Atmosphere Containing Vapors of Diethylphthalate, Acetic Acid and Water

DOI: 10.4236/ajac.2013.47A011   PDF   HTML   XML   4,154 Downloads   5,714 Views   Citations

Abstract

Using a complex ambient atmosphere containing vapors of an organic compound, acid and water, the molecular adsorption and desorption behavior on a silicon surface was studied using the in-situ measurement of a quartz crystal microbalance linked to the rate theory. Because the behavior of diethylphthalate (DEP) could be reproduced assuming a single-component system, acetic acid (ACA) and DEP are concluded to separately exist in the water film and at the water film surface, respectively. This conclusion was obtained from both the adsorption and desorption behaviors. The process developed in this study is useful for determining the layer in which chemical compounds are present.

Share and Cite:

H. Habuka, N. Ono, A. Sakurai and T. Naito, "Molecular Adsorption and Desorption Behavior on Silicon Surface in a Complex Ambient Atmosphere Containing Vapors of Diethylphthalate, Acetic Acid and Water," American Journal of Analytical Chemistry, Vol. 4 No. 7A, 2013, pp. 80-85. doi: 10.4236/ajac.2013.47A011.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] S. D. Gendt, D. M. Knotter, K. Kenis, M. Depas, M. Meuris, P. W. Mertens and M. M. Heyns, “Impact of Organic Contamination on Thin Gate Oxide Quality,” Japanese Journal of Applied Physics, Vol. 37, No. 9A, 1998, pp. 4649-4655. doi:10.1143/JJAP.37.4649
[2] F. Sugimoto, S. Okamura, T. Inokuma, Y. Kurata and S. Hasegawa, “Influence of Organic Contamination on Silicon Dioxide Integrity,” Japanese Journal of Applied Physics, Vol. 39, No. 5A, 2000, pp. 2497-2502. doi:10.1143/JJAP.39.2497
[3] Y. Kang, W. Den and H. Bai, “Short Time Deposition Kinetics of Diethyl Phthalate and Dibutyl Phthalate on a Silicon Wafer Surface,” Industrial & Engineering Chemistry Research, Vol. 45, No. 4, 2006, pp. 1331-1336. doi:10.1021/ie050754s
[4] K. Saga and T. Hattori, “Analysis of Organic Contamination Adsorbed on a Silicon Surface in a Vacuum Chamber in Electron Beam Lithography,” Journal of the Electrochemical Society, Vol. 152, No. 6, 2005, pp. G494-G499. doi:10.1149/1.1914756
[5] K. S. Kim, J. Y. Kim, H. B. Kang, B. Y. Lee and S. M. Park, “Effects of Organic Contaminants during Metal Oxide Semiconductor Processes,” Journal of the Electrochemical Society, Vol. 155, No. 6, 2008, pp. H426-H431.
[6] T. Takahagi, S. Shingubara, H. Sakaue, K. Hoshino and H. Yashima, “Study on Adsorption Behavior of Organic Contaminations on Silicon Surface by Gas Chromatography/Mass Spectrometry,” Japanese Journal of Applied Physics, Vol. 35, No. 7A, 1996, pp. L818-L821.
[7] S. Tlili, E. G. Alvarez, S. Gligorovski and H. Wortham, “Adsorption Behavior of Two Model Airborne Organic Contaminants on Wafer Surfaces,” Chemical Engineering Journal, Vol. 187, No. 1-2, 2012, pp. 239-247. doi:10.1016/j.cej.2012.01.067
[8] T. Ehmann, L. Fabry, H. Ruefer, L. Kotz, S. Pahlke and C. Mantler, “Modification and Validation of the Pyromellitic Acid Electrolyte for the Capillary Electrophoretic Determination of Anions,” Journal of Chromatography A, Vol. 995, No. 1-2, 2003, pp. 217-226. doi:10.1016/S0021-9673(03)00488-6
[9] H. Habuka, M. Shimada and K. Okuyama, “Rate Theory of Multicomponent Adsorption of Organic Species on Silicon Wafer Surface,” Journal of the Electrochemical Society, Vol. 147, No. 6, 2000, pp. 2319-2323. doi:10.1149/1.1393527
[10] H. Habuka, M. Shimada and K. Okuyama, “Adsorption and Desorption Rate of Multicomponent Organic Species on Silicon Wafer Surface,” Journal of the Electrochemical Society, Vol. 148, No. 7, 2001, pp. G365-G369. doi:10.1149/1.1373660
[11] H. Habuka, K. Suzuki, S. Okamura, M. Shimada and K. Okuyama, “QCM for Si Surface Organic Contamination,” Journal of the Electrochemical Society, Vol. 152, No. 4, 2005, pp. G241-G245. doi:10.1149/1.1864472
[12] H. Habuka, M. Tawada, T. Takeuchi and M. Aihara, “Gas Velocity Influence on Silicon Surface Organic Contamination Evaluated Using Quartz Crystal Microbalance,” Journal of the Electrochemical Society, Vol. 152, No. 11, 2005, pp. G862-G866. doi:10.1149/1.2051869
[13] H. Habuka and D. Yamaya, “Physisorption and Desorption of Diethylphthalate and Isopropanol on a Silicon Surface,” Journal of the Electrochemical Society, Vol. 154, No. 12, 2007, pp. H1031-H1035. doi:10.1149/1.2794283
[14] H. Habuka, T. Naito and N. Kawahara, “Molecular Interaction Radii and Rate Constants for Clarifying Organic Compound Physisorption on Silicon Surface,” Journal of the Electrochemical Society, Vol. 157, No. 11, 2010, pp. H1014-H1018. doi:10.1149/1.3489364
[15] H. Habuka, T. Naito and A. Sakurai, “Acetic Acid Addsorption to Water Layer on Silicon Surface,” Proceedings of the 6th International Symposium on Advanced Science and Technology of Silicon Materials, (JSPS Symposium), Kona, Hawaii, 19-23 November 2012, pp. 63-66.
[16] “Crystal and Frequency Control Glossary,” International Crystal Manufacturing. http://www.icmfg.com/glossary.html
[17] N. K. Kai, “Kagakubinran,” 4th Edition, Iwanami, Tokyo, 1993.
[18] J. B. Israelachvili, “Intermolecular and Surface Forces,” Academic Press, Amsterdam, 1992.
[19] P. Atkins and J. de Paula, “Physical Chemistry,” 9th Edition, Oxford University Press, Oxford, 2010.

  
comments powered by Disqus

Copyright © 2020 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.