TRAIL Immunolocalisation in the Rat Periodontal Ligament during Experimental Tooth Movement. A Preliminary Study


The aim of this study was to evaluate immunohistochemically TRAIL (TNF-Related Apoptosis Inducing Ligand) expression in the periodontal ligament of rats’ molars considering its distribution pattern in the tension and compressive regions of ligament during orthodontic movement. Sixteen Sprague-Dawley rats, weighing between 120 and 200 gwere used in the present study. Tooth movement was induced by placing elastic bands between the maxillary first and second molars. The elastic bands were left in place for 12 (time T1) and 24 (time T2) hours. After rats’ euthanasia, maxillae were dissected free and the sections were exposed to a primary rabbit polyclonal anti-TRAIL anti-body. The staining status was identified as either negative or positive by using 3,3-diaminobenzidine (DAB) to develop the immunoreaction. Data were analyzed using ANOVA test and a post-hoc Dunn’s Multiple Comparison test. P-values of less than 0.05 were considered statistically significant. The staining for TRAIL in the tension side appeared darker (intensity of staining = 2) than in the compressive side (intensity of staining = 1) 12 h after the tooth movement. The stainings of both sides of PDL were observed to be up-regulated 24 h after the application of the force (tension side = 3, compression side = 2; P < 0.05). TRAIL is expressed in the periodontal ligament of rats’ molars during experimental tooth movement both in the compression and in the tension sides. The latter showed the highest amount of TRAIL immunolabeling.

Share and Cite:

C. Loreto, G. Musumeci, S. Castorina, J. Valentino, S. Giunta and R. Leonardi, "TRAIL Immunolocalisation in the Rat Periodontal Ligament during Experimental Tooth Movement. A Preliminary Study," Open Journal of Apoptosis, Vol. 2 No. 3, 2013, pp. 31-36. doi: 10.4236/ojapo.2013.23005.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] S. A. Alfaqeeh and S. Anil, “Osteocalcin and N-Telopeptides of Type I Collagen Marker Levels in Gingival Crevicular Fluid during Different Stages of Orthodontic Tooth Movement, ” Americam Journal Orthodontics and Dentofacial Orthopedics, Vol. 139, No. 6, 2011, pp. 553-559. doi:10.1016/j.ajodo.2011.03.005
[2] T. P. Garlet, U. Coelho, C. E. Repeke, J. S. Silva, Q. Cunha Fde and G. P. Garlet, “Differential Expression of Osteoblast and Osteoclast Chemmoatractants in Compression and Tension Sides during Orthodontic Movement, ” Cytokine, Vol. 42, No. 3, 2008, pp. 330-335. doi:10.1016/j.cyto.2008.03.003
[3] R. B. Johnson, “Osteoclast Distribution within the Rat Interdental Septum Coincident to Experimental Tooth Movement Using Light Forces,” The Anatomical Records, Vol. 290, No. 1, 2007, pp. 74-82. doi:10.1002/ar.20408
[4] R. Leonardi, C. Loreto, N. F. Talic, R. Caltabiano and G. Musumeci, “Immunolocalization of Lubricin in the Rat Periodontal Ligament during Experimental Tooth Movement,” Acta Histochemica, Vol. 114, No. 7, 2012, pp. 700-704. doi:10.1016/j.acthis.2011.12.005
[5] R. Leonardi, N. F. Talic and C. Loreto, “MMP-13 (Collagenase 3) Immunolocalisation during Initial Orthodontic Tooth Movement in Rats,” Acta Histochemica, Vol. 109, No. 3, 2007, pp. 215-220. doi:10.1016/j.acthis.2007.01.002
[6] G. Cantarella, R. Cantarella, M. Caltabiano, N. Risuglia, R. Bernardini and R. Leonardi, “Levels of Matrix Metalloproteinases 1 and 2 in Human Gingival Crevicular Fluid during Initial Tooth Movement,” Americam Journal Orthodontics and Dentofacial Orthopedics, Vol. 130, No. 5, 2006, pp. 11-16. doi:10.1016/j.ajodo.2006.04.020
[7] V. Krishnan and Z. Davidovitch, “Cellular, Molecular, and Tissue-Level Reactions to Orthodontic Force,” Americam Journal Orthodontics and Dentofacial Orthopedics, Vol. 129, No. 4, 2006, pp. 1-32. doi:10.1016/j.ajodo.2005.10.007
[8] W. J. Rody, G. J. King and G. Gu, “Osteoclast Recruitment to Sites of Compression in Orthodontic Tooth Movement,” Americam Journal Orthodontics and Dentofacial Orthopedics, Vol. 120, No. 5, 2001, pp. 477-489. doi:10.1067/mod.2001.118623
[9] H. Lucas, P. M. Bartold, A. A. Dharmapatni, C. A. Holding and D. R. Haynes, “Inhibition of Apoptosis in Periodontitis,” Journal of Dental Research, Vol. 89, No. 1, 2010, pp. 29-33. doi:10.1177/0022034509350708
[10] R. S. Masella and M. Meister, “Current Concepts in the Biology of Orthodontic Tooth Movement,” Americam Journal Orthodontics and Dentofacial Orthopedics, Vol. 129, No. 4, 2006, pp. 458-468. doi:10.1016/j.ajodo.2005.12.013
[11] P. J. Brooks, D. Nilforoushan, M. F. Manolson, C. A. Simmons and S. G. Gong, “Molecular Markers of Early Orthodontic Tooth Movement,” Angle Orthodontis, Vol. 79, No. 6, 2009, pp. 1108-1113. doi:10.2319/121508-638R.1
[12] B. F. Boyce and L. Xing, “Functions of RANKL/ RANK/ OPG in Bone Modeling and Remodeling,” Archives Biochememical and Biophysics, Vol. 473, No. 2, 2008, pp. 139-146. doi:10.1016/
[13] B. Chen, S. Ma, S. Yang, X. Xing, R. Gu and Y. Hu, “DR5 and DcR2 Are Expressed in Human Lumbar Intervertebral Discs,” Spine, Vol. 34, No. 19 , pp. 677-681. doi:10.1097/BRS.0b013e3181b4d4ee
[14] C. Loreto, G. Musumeci, A. Castorina, C. Loreto and G. Martinez, “Degenerative Disc Disease of Herniated Intervertebral Discs is Associated with Extracellular Matrix Remodeling, Vimentin-Positive Cells and Cell Death,” Annual of Anatomy, Vol. 193, No. 2, 2011, pp. 156-162. doi:10.1016/j.aanat.2010.12.001
[15] S. Colucci, G. Brunetti, F. P. Cantatore, A. Oranger, G. Mori, P. Pignataro, et al., “The Death Receptor DR5 is Involved in TRAIL-Mediated Human Osteoclast Apoptosis,” Apoptosis, Vol. 12, No. 9, 2007, pp. 1623-1632. doi:10.1007/s10495-007-0095-3
[16] H. Kumamoto and K. Ooya, “Expression of Tumor Necrosis Factor Alpha, TNF-Related Apoptosis-Inducing ligand, and Their Associated Molecules in Ameloblastomas,” Journal of Oral Pathology and Medicine, Vol. 34, No. 5, 2005, pp. 287-294. doi:10.1111/j.1600-0714.2005.00311.x
[17] C. Loreto, G. Barbagli, R. Djinovic, G. Vespasiani, M. L. Carnazza, R. Miano, et al., “Tumor Necrosis Factor-Related Apoptosis-Inducing Ligand (TRAIL) and Its Death Receptor (DR5) in Peyronie’s Disease. A Biomolecular Study of Apoptosis Activation,” Journal of Sexual Medicine, Vol. 2011, No. 1, 2011, pp. 109-115. doi:10.1111/j.1743-6109.2010.02003.x
[18] R. Leonardi, L. E. Almeida, P. C. Trevilatto and C. Loreto, “Occurrence and Regional Distribution of TRAIL and DR5 on Temporomandibular Joint Discs: Comparison of Disc Derangement with and without Reduction,” Oral Surgery, Oral Medicine, Oral Pathology, Oral Radiology and Endodontics, Vol. 109, No. 2, 2009, pp. 244-251. doi:10.1016/j.tripleo.2009.09.028
[19] Y. Ren, J. C. Maltha and A. M. Kuijpers-Jagtman, “The Rat as a Model for Orthodontic Tooth Movement—A Critical Review and a Proposed Solution,” European Journal Orthodontics, Vol. 26, No. 5, 2004, pp. 483-490. doi:10.1093/ejo/26.5.483
[20] R. Leonardi, M. C. Rusu, F. Loreto, C. Loreto and G. Musumeci, “Immunolocalization and Expression of Lubricin in the Bilaminar Zone of the Human Temporomandibular Disc,” Acta Histochemica, Vol. 114, No. 1, 2012, pp. 1-5. doi:10.1016/j.acthis.2010.11.011
[21] X. Li, L. Zhang, N. Wang, X. Feng and L. Bi, “Periodontal Ligament Remodeling and Alveolar Bone Resorption during Orthodontic Tooth Movement in Rats with Diabetes,” Diabetes Technology and Therapy, Vol. 12, No. 1, 2010, pp. 65-73. doi:10.1089/dia.2009.0085
[22] R. Xie, A. M. Kuijpers-Jagtman and J. C. Maltha, “Osteoclast Differentiation and Recruitment during Early Stages of Experimental Tooth Movement in Rats,” European Journal of Oral Sciences, Vol. 117, No. 1, 2009, pp. 43-50. doi:10.1111/j.1600-0722.2008.00588.x
[23] C. Falschlehner, C. H. Emmerich, B. Gerlach and H. Walczak, “TRAIL Signalling: Decisions between Life and Death,” International Journal of Biochemistry and Cell Biology, Vol. 39, No. 7-8, 2007, pp. 1462-1475.
[24] T. M. Baetu and J. Hiscott, “On the TRAIL to Apoptosis,” Cytokine and Growth Factor Reviews, Vol. 13, No. 3, 2002, pp. 199-207. doi:10.1016/S1359-6101(02)00006-0
[25] B. R. Chaudhari, R. F. Murphy and D. K. Agrawal, “Following the TRAIL to Apoptosis,” Immunology Research, Vol. 35, No. 3, 2006, pp. 249-262. doi:10.1385/IR:35:3:249
[26] C. Loreto, L. E. Almeida, M. R. Migliore, M. Caltabiano and R. Leonardi, “TRAIL, DR5 and Caspase 3-Dependent Apoptosis in Vessels of Diseased Human Temporomandibular Joint Disc. An Immunohistochemical Study,” European Journal of Histochemistry, Vol. 54, No. 3, 2010, pp. 175-179. doi:10.4081/ejh.2010.e40
[27] C. Loreto, L. E. Almeida, P. Trevilatto and R. Leonardi, “Apoptosis in Displaced Temporomandibular Joint Disc with and without Reduction: An Immunohistochemical Study,” Journal of Oral Pathology and Medicine, Vol. 40, No. 1, 2011, pp. 103-110. doi:10.1111/j.1600-0714.2010.00920.x
[28] C. Loreto, G. Musumeci and R. Leonardi, “Chondrocyte-Like Apoptosis in Temporomandibular Joint Disc Internal Derangement as a Repair-Limiting Mechanism. An in Vivo Study,” Histology and Histopathology, Vol. 24, No. 3, 2009, pp. 293-298. doi:10.1007/s00167-010-1215-0
[29] G. Musumeci, C. Loreto, M. L. Carnazza and G. Martinez, “Characterization of Apoptosis in Articular Cartilage Derived from the Knee Joints of Patients with Osteoarthritis,” Knee Surgery Sports Traumatology Arthroscopy, Vol. 19, No. 2, 2011, pp. 307-313. doi:10.1007/s00167-010-1215-0
[30] R. Caltabiano, R. Leonardi, G. Musumeci, G. Bartoloni, M. C. Rusu, L. E. Almeida and C. Loreto, “Apoptosis in Temporomandibular Joint Disc with Internal Derangement Involves Mitochondrial-Dependent Pathways. An in Vivo Study,” Acta Odontologica Scandinavica, Vol. 71, No. 3-4, pp. 577-583. doi:10.3109/00016357.2012.700060
[31] A. Bhardwaj and B. B. Aggarwal, “Receptor-Mediated Choreography of Life and Death,” Journal of Clinical Immunology, Vol. 23, No. 5, 2003, pp. 317-332. doi:10.1023/A:1025319031417
[32] L. J. Robinson, C. W. Borysenko and H. C. Blair, “Tumor Necrosis Factor Family Receptors Regulating Bone Turnover: New Observations in Osteoblastic and Osteoclastic Cell Lines,” Annals of the New York Academy of Sciences, Vol. 1116, No. 1, 2007, pp. 432-443. doi:10.1196/annals.1402.025
[33] A. R. Sekhavat, K. Mousavizadeh, H. R. Pakshir and F. S. Aslani, “Effect of Misoprostol, a Prostaglandin E1 Analog, on Orthodontic Tooth Movement in Rats,” American Journal of Orthodontics and Dentofacial Orthopedics, Vol. 122, No. 5, pp. 542-547. doi:10.1067/mod.2002.126153
[34] K. Yamasaki, Y. Shibata, S. Imai, Y. Tani, Y. Shibasaki and T. Fukuhara, “Clinical Application of Prostaglandin E1 (PGE1) upon Orthodontic Tooth Movement,” American Journal of Orthodontics, Vol. 85, No. 6, 1984, pp. 508-518. doi:10.1016/0002-9416(84)90091-5
[35] B. J. Leiker, R. S. Nanda, G. F. Currier, R. I. Howe and P. K. Sinha, “The Effects of Exogenous Prostaglandins on Orthodontic Tooth Movement in Rats,” American Journal of Orthodontics and Dentofacial Orthopedics, Vol. 108, No. 4, 1995, pp. 380-388. doi:10.1016/S0889-5406(95)70035-8
[36] V. Cardile, G. Musumeci, E. Sicurezza, S. Caggia, M. C. Rusu, R. Leonardi and C. Loreto, “TRAIL and Its Receptors DR5 and DcR2 Expression, in Orthodontic Tooth Movement,” Histology and Histopathology, Vol. 28, No. 7, 2013, pp. 933-940.

Copyright © 2021 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.