Combined Effect of Infiltration, Capillary Barrier and Sloping Layered Soil on Flow and Solute Transfer in a Heterogeneous Lysimeter

Abstract

This aim of this paper is to describe a study of the combined effect of infiltration, capillary barrier and sloping layered soil on both flow and solute transport processes in a large, physical model (1 × 1 × 1.6 m3) called LUGH (Lysimeter for Urban Groundwater Hydrology) and a 3D numerical flow model. Sand and a soil composed of a bimodal sand-gravel mixture were placed in the lysimeter to simulate one of the basic structural and textural elements of the heterogeneity observed in the vadose zone under an infiltration basin of Lyon (France). Water and an inert tracer (KBr) were injected from the top of the lysimeter using a specific water sprinkler system and collected at 15 different outlets at the bottom. The outlet flows and the 15 breakthrough curves obtained presented high heterogeneity, emphasising the establishment of preferential flows resulting from both capillary barrier and soil layer dip effects. Numerical modelling led to better understanding of the mechanisms responsible for these heterogeneous transfers and it was also used to perform a sensitivity analysis of the effects of water velocity (water and solute flux fed by the sprinkler) and the slope interface. The results show that decreasing velocity and increasing the slope of the interface can lead to the development of preferential flows. In addition, the offset of the centre of gravity of the flow distribution at the output increases linearly as a function of the slope angle of the layered soil. This paper provides relevant information on the coupling between hydrodynamic processes and pollutant transfer in unsaturated heterogeneous soil and emphasizes the role of the geometry of the interfaces between materials and boundary conditions as key factors for preferential flow.


Share and Cite:

L. Bien, D. Predelus, L. Lassabatere, T. Winiarski and R. Angulo-Jaramillo, "Combined Effect of Infiltration, Capillary Barrier and Sloping Layered Soil on Flow and Solute Transfer in a Heterogeneous Lysimeter," Open Journal of Modern Hydrology, Vol. 3 No. 3, 2013, pp. 138-153. doi: 10.4236/ojmh.2013.33018.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] EPA, “Protecting Water Quality from Agricultural Run-off,” US Environmental Protection Agency, 2005.
[2] EPA, “Protecting Water Quality from Urban Runoff,” US Environmental Protection Agency, 2003.
[3] J. T. Smullen, A. L. Shallcross and K. A. Cave, “Updating the U.S. Nationwide Urban Runoff Quality Date Base,” Water Science and Technology, Vol. 39, No. 12, 1999, pp. 9-16. doi:10.1016/S0273-1223(99)00312-1
[4] S. E. Allaire, S. Roulier and A. J. Cessna, “Quantifying Preferential Flow in Soils: A Review of Different Techniques,” Journal of Hydrology, Vol. 378, No. 1-2, 2009, pp. 179-204. doi:10.1016/j.jhydrol.2009.08.013
[5] J. Bouma, A. Jongerius, O. Boersma, A. Jager and D. Schoonderbeek, “The Function of Different Types of Macropores during Saturated Flow through Four Swelling Soil Horizons,” Soil Science Society of America Journal, Vol. 41, No. 5, 1977, pp. 945-950. doi:10.2136/sssaj1977.03615995004100050028x
[6] K. J. Beven and P. Germann, “Macropores and Water Flow in Soils,” Water Resources Research, Vol. 18, No. 5, 1982, pp. 1311-1325.
[7] P. Cannavo, L. Vidal-Beaudet, B. Bechet, L. Lassabatère and S. Charpentier, “Spatial Distribution of Sediments and Transfer Properties in Soils in a Stormwater Infiltration Basin,” Journal of Soils and Sediments, Vol. 10, No. 8, 2010, pp. 1499-1509. doi:10.1007/s11368-010-0258-7
[8] D. E. Hill and J.-Y. Parlange, “Wetting Front Instability in Layered Soils,” Proceedings of the Soil Science Society of America, Vol. 36, No. 5, 1972, pp. 697-702.
[9] T. Miyazaki, “Water Flow in Unsaturated Soil Layered Slopes,” Journal of Hydrology, Vol. 102, No. 1-4, 1988, pp. 201-214. doi:10.1016/0022-1694(88)90098-4
[10] K.-J. S. Kung, “Preferential Flow in a Vadose Zone: 2. Mechanism and Implications,” Geoderma, Vol. 46, No. 1-3, 1990, pp. 59-71. doi:10.1016/0016-7061(90)90007-V
[11] M. T. Walter, et al., “Funneled Flow Mechanisms in a Sloping Layered Soil: Laboratory Investigation,” Water Resources Research, Vol. 36, No. 4, 2000, pp. 841-849.
[12] B. Bussière, S. A. Apithy, M. Aubertin and R. P. Chapuis, “Water Diversion Capacity of Inclined Capillary Barriers,” Proceedings of the 56th CGS-IAH Conference, Winnipeg, 29 September-1 October 2003, pp. 192-200.
[13] A. Heilig, T. S. Steenhuis, M. T. Walter and S. J. Herbert, “Funneled Flow Mechanisms in Layered Soil: Field Investigations,” Journal of Hydrology, Vol. 279, No. 1-4, 2003, pp. 210-223. doi:10.1016/S0022-1694(03)00179-3
[14] S. Kaskassian, et al., “L’essai d’Infiltration Couplé à un Tra?age Non-Réactif: Un Outil Pour Evaluer le Transfert des Polluants dans la Zone Non-Saturée des Sols,” L’eau, l’Industrie, les Nuisances, Vol. 349, 2012, pp. 38-45.
[15] K.-J. S. Kung, “Preferential Flow in a Sandy Vadose Zone: 1. Field Observation,” Geoderma, Vol. 46, 1990, pp. 51-58.
[16] L. Février, “Transfert d’un Mélange Zn-Cd-Pb dans un Dép?t Fluvio-Glaciaire Carbonate. Approche en Colonnes de Laboratoire,” Ph.D. Thesis, Ecole Nationale des Travaux Publics de l’Etat, Lyon, 2001.
[17] L. Lassabatère, T. Winiarski and R. Galvez Cloutier, “Retention of Three Heavy Metals (Zn, Pb and Cd) in a Calcareous Soil Controlled by the Modification of Flow with Geotextiles,” Environmental Science and Technology, Vol. 38, No. 15, 2004, pp. 4215-4221. doi:10.1021/es035029s
[18] E. Lamy, L. Lassabatère, B. Bechet and H. Andrieu, “Modeling the Influence of an Artificial Macropore in Sandy Columns on Flow and Solute Transfer,” Journal of Hydrology, Vol. 376, No. 3-4, 2009, pp. 392-402. doi:10.1016/j.jhydrol.2009.07.048
[19] L. Lassabatère, et al., “Concomitant Zn-Cd and Pb Retention in a Carbonated Fluvio-Glacial Deposit under Both Static and Dynamic Conditions,” Chemosphere, Vol. 69, No. 9, 2007, pp. 1499-1508. doi:10.1016/j.chemosphere.2007.04.053
[20] C. Lanthaler, “Lysimeter Stations and Soil Hydrology Measuring Sites in Europe—Purpose, Equipment, Research Results, Future Developments,” A Diploma Thesis for the Degree of Magistra der Naturwissenschaften, School of Natural Sciences, Karl-Franzens-University, Graz, 2004.
[21] R. Schoen, J. P. Gaudet and T. Bariac, “Preferential Flow and Solute Transport in a Large Lysimeter, under Controlled Boundary Conditions,” Journal of Hydrology, Vol. 215, No. 1-4, 1999, pp. 70-81. doi:10.1016/S0022-1694(98)00262-5
[22] T. P. Anguela, “Etude du Transfert d’Eau et de Solutés dans un sol à Nappe Superficielle Drainée Artificiellement,” Ph.D. Thesis, Ecole Nationale du Génie Rural, des Eaux et Forêts, Paris, 2004.
[23] H. M. Abdou and M. Flury, “Simulation of Water Flow and Solute Transport in Free-Drainage Lysimeters and Field Soils with Heterogeneous Structures,” European Journal of Soil Science, Vol. 55, No. 2, 2004, pp. 229-241.
[24] L. B. Bien, X. Peyrard, L. Lassabatère, T. Winiarski and R. Angulo-Jaramillo, “Transferts d’Eau et de Particules dans la Zone Non-Saturée Hétérogène: Développement du Pilote de Laboratoire LUGH,” Proceedings of the 35 Ième Journées du GFHN, Louvain-la-Neuve, Belgique, 23-25 Novembre 2010, pp. 165-168.
[25] L. A. Richards, “Capillary Conduction of Liquids through Porous Mediums,” Physics, Vol. 1, No. 5, 1931, pp. 318-333. doi:10.1063/1.1745010
[26] M. T. van Genuchten, “A Closed form Equation for Predicting the Hydraulic Conductivity of Unsaturated Soils,” Soil Science Society of America Journal, Vol. 44, No. 5, 1980, pp. 892-898. doi:10.2136/sssaj1980.03615995004400050002x
[27] Y. Mualem, “A New Model for Predicting the Hydraulic Conductivity of Unsaturated Porous Media,” Water Resources Research, Vol. 12, No. 3, 1976, pp. 513-522. doi:10.1029/WR012i003p00513
[28] J. Bear, “Dynamics of Fluids in Porous Media,” American Elsevier, New York, 1972, p. 764.
[29] R. J. Millington and J. P. Quirk, “Permeability of Porous Media,” Transactions of the Faraday Society, Vol. 57, 1961, pp. 1200-1207. doi:10.1039/tf9615701200
[30] D. Goutaland, et al., “Hydrostratigraphic Characterization of Glaciofluvial Deposits Underlying an Infiltration Basin Using Ground Penetrating Radar,” Vadose Zone Journal, Vol. 7, No. 1, 2008, pp. 194-207. doi:10.2136/vzj2007.0003
[31] L. Lassabatère, et al., “Beerkan Estimation of Soil Transfer Parameters through Infiltration Experiments—BEST,” Soil Science Society of America Journal, Vol. 70, 2006, pp. 521-532. doi:10.2136/sssaj2005.0026
[32] L. Lassabatère, R. Angulo-Jaramillo, J. M. Soria Ugalde, J. Simunek and R. Haverkamp, “Analytical and Numerical Modeling of Water Infiltration Experiments,” Water Resources Research, Vol. 45, 2009, Article ID: W12415.
[33] P. Nasta, L. Lassabatère, M. Kandelous, J. Simunek and R. Angulo-Jaramillo, “Analysis of the Role of Tortuosity and Infiltration Constants in the Beerkan Method,” Soil Science Society of America Journal, Vol. 76, No. 6, 2012, pp. 1999-2005. doi:10.2136/sssaj2012.0117n
[34] L. Lassabatère, et al., “Effect of the Settlement of Sediments on Water Infiltration in Two Urban Infiltration Basins,” Geoderma, Vol. 156, No. 3-4, 2010, pp. 316-325. doi:10.1016/j.geoderma.2010.02.031
[35] E. Gonzalez-Sosa, et al., “Impact of Land Use on the Hydraulic Properties of the Topsoil in a Small French Catchment,” Hydrological Processes, Vol. 24, No. 17, 2010, pp. 2382-2399.
[36] D. Yilmaz, L. Lassabatère, R. Angulo-Jaramillo and M. Legret, “Hydrodynamic Characterization of Basic Oxygen Furnace Slags through Adapted BEST Method,” Vadoze Zone Journal, Vol. 9, No. 1, 2010, pp. 107-116. doi:10.2136/vzj2009.0039
[37] M. T. Van Genuchten, F. J. Leij and S. R. Yates, “The RETC Code for Quantifying the Hydraulic Functions of Unsaturated Soils,” US Environmental Protection Agency, Oklahoma, 1991.
[38] I. Mubarak, J. C. Mailhol, R. Angulo-Jaramillo, S. Bouarfa and P. Ruelle, “Effect of Temporal Variability in Soil Hydraulic Properties on Simulated Water Transfer under High-Frequency Drip Irrigation,” Agricultural Water Management, Vol. 96, No. 11, 2009, pp. 1547-1559. doi:10.1016/j.agwat.2009.06.011
[39] L. B. Bien, R. Angulo-Jaramillo, D. Predelus, L. Lassabatère and T. Winiarski, “Preferential Flow and Mass Transport Modeling in a Heterogeneous Unsaturated Soil,” Proceedings of the First Pan-American Conference on Unsaturated Soils (Pam-Am UNSAT 2013), Cartagena de Indias, 20-22 February 2013, pp. 211-216.
[40] D. Schweich and M. Sardin, “Les Mécanismes D’interation Solide-Liquide et Leur Modélisation: Applications aux Etudes de Migration en Milieu Aqueux,” 1986, pp. 59-107.
[41] COMSOL AB, “COMSOL Multiphysics User’s Guide, Version 3.5a,” COMSOL AB, Grenoble, 2008, p. 624.

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.