Microstructural Evolution in Cu-Mg Alloy Processed by Conform

Abstract

The objective of this study is to investigate the possibility of continuous extrusion forming (Conform process) and microstructural evolution the of Cu-Mg alloy. The results indicate that Conform process can break as-cast grains and refine the structure, meanwhile. This process can improve the degree of the structure homogeneity. The TEM and EBSD techniques were used to investigate the morphology, grain size and misorientation of the samples at cavity entrance and cavity export. Refined structures after shear deformation include broken grains and subgrains formed by dislocation reconstruction. Due to the relatively high deformation temperature, dynamic recrystallization occurred during deformation. The subgrain rotation nucleation took place, and grain boundary migration resulted in grain growth. However, the coarse grains were refined by anneal twins.

Share and Cite:

Song, L. , Yuan, Y. and Yin, Z. (2013) Microstructural Evolution in Cu-Mg Alloy Processed by Conform. International Journal of Nonferrous Metallurgy, 2, 100-105. doi: 10.4236/ijnm.2013.23014.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] C. Etherington, “CONFORM—A New Concept for the Continuous Extrusion Forming of Metals,” Transactions of the American Society of Mechanical Engineers, Journal of Engineering for Industry, Vol. 96B, No. 3, 1974, pp. 893-900.
[2] S. Harper, “Special Extrusion Processes for Non-Ferrous Metals,” The Metallurgist and Materials Technologist, Vol. 12, No. 5, 1980, pp. 257-260.
[3] T. Reinikainen, A. S. Korhonen, K. Anderson and S. Kivivuori, “Computer-Aided Modelling of a New Copper Extrusion Process,” Annals of CIRP, Vol. 42, No. 1, 1993, pp. 265-268. doi:10.1016/S0007-8506(07)62440-8
[4] D. Green, “Continuous Extrusion-Forming of Wire Section,” Journal of the Institute of Metals (London), Vol. 100, 1972, pp. 295-300.
[5] C. Etherington, “Continuous Extrusion Forming of Metals,” Transactions of the American Society of Mechanical Engineers, Series B, Vol. 96, No. 3, 1968, pp. 893-900.
[6] Z. Horita, T. Fujinami, M. Nemoto and T. G. Langdon, “Improvement of Mechanical Properties for Al Alloys Using Equal-Channel Angular Pressing,” Journal of Materials Processing Technology, Vol. 117, No. 3, 2001, pp. 288-292. doi:10.1016/S0924-0136(01)00783-X
[7] W. Z. Han, S. D. Wua, S. X. Li and Y. D. Wang, “Intermediate Annealing of Pure Copper during Cyclic Equal Channel Angular Pressing,” Materials Science and Engineering A, Vol. 483-484, 2008, pp. 430-432. doi:10.1016/j.msea.2006.10.179
[8] A. Azushima, R. Kopp, A. Korhonen, D. Y. Yang and F. Micari, “Severe Plastic Deformation (SPD) Processes for Metals,” CIRP Annals: Manufacturing Technology, Vol. 57, 2008, pp. 716-735. doi:10.1016/j.cirp.2008.09.005
[9] A. Mishra, V. Richard, F. Grégori, R. J. Asaro and M. A. Meyers, “Microstructural Evolution in Copper Processed by Severe Plastic Deformation,” Materials Science and Engineering A, Vol. 410-411, 2005, pp. 290-298. doi:10.1016/j.msea.2005.08.201
[10] M. Kawasakia, Z. Horitab and T. G. Langdona, “Microstructural Evolution in High Purity Aluminum Processed by ECAP,” Materials Science and Engineering A, Vol. 524, No. 1-2, 2009, pp. 143-150. doi:10.1016/j.msea.2009.06.032
[11] A. A. Gazder, F. Dalla Torre, C. F. Gu, C. H. J. Davies and E. V. Pereloma, “Microstructure and Texture Evolution of bcc and fcc Metals Subjected to Equal Channel Angular Extrusion,” Materials Science and Engineering A, Vol. 415, No. 1-2, 2006, pp. 126-139. doi:10.1016/j.msea.2005.09.065
[12] I. V. Alexandrov and R. Z. Valiev, “Nanostructures from Severe Plastic Deformation and Mechanisms of LargeStrain Work Hardening,” Nanostructured Materials, Vol. 12, No. 5-8, 1999, pp. 709-712. doi:10.1016/S0965-9773(99)00223-8
[13] T. Manninen, T. Katajarinne and P. Ramsay, “Analysis of Flash Formation in Continuous Rotary Extrusion of Copper,” Journal of Materials Processing Technology, Vol. 177, No. 1-3, 2006, pp. 600-603. doi:10.1016/j.jmatprotec.2006.04.051
[14] L. P. Lu, X. B. Yun, J. Y. Yang and B. Y. Song, “Study on Deforming Behavior of Copper-Magnesium Alloy Wire in Extending Continuous-extrusion Process,” Hot Working Technology, Vol. 39, 2010, pp. 92-95.
[15] S. Qu, X. H. An, H. J. Yang, C. X. Huang, G. Yang, Q. S. Zang, Z. G. Wang, S. D. Wu and Z. F. Zhang, “Microstructural Evolution and Mechanical Properties of Cu-Al Alloys Subjected to Equal Channel Angular Pressing,” Acta Materialia, Vol. 57, No. 5, 2009, pp. 1586-1601. doi:10.1016/j.actamat.2008.12.002
[16] P. B. Prangnell, A. Gholinia, V. M. Markushev, “The Effect of Strain Path on the Rate of Formation of High Angle Grain Boundaries during ECAE,” In: T. C. Lowe and R. Z. Valiev, Eds., Investigations and Applications of Severe Plastic Deformation, Kluwer Academic Publisher, Dordrecht, 2000, pp. 65-71. doi:10.1007/978-94-011-4062-1_9
[17] Y. Iwahashi, Z. Horita, M. Nemoto and T. G. Langdon, “The Process of Grain Refinement in Equal-Channel Angular Pressing,” Acta Materialia, Vol. 46, No. 9, 1998, pp. 3317-3331. doi:10.1016/S1359-6454(97)00494-1
[18] Y. Iwahashi, Z. Horita, M. Nemoto and T. G. Langdon, “An Investigation of Microstructural Evolution during Equal-Channel Angular Pressing,” Acta Materialia, Vol. 45, No. 11, 1997, pp. 4733-4741. doi:10.1016/S1359-6454(97)00100-6
[19] F. J. Humphreys, “Review Grain and Subgrain Characterisation by Electron Backscatter Diffraction,” Journal of Materials Science, Vol. 36, 2001, pp. 3833-3854. doi:10.1023/A:1017973432592
[20] R. Z. Valiev, R. K. Islamgaliev and I. V. Alexandrov, “Bulk Nanostructured Materials from Severe Plastic Deformation,” Progress in Materials Science, Vol. 45, No. 2, 2000, pp. 103-189. doi:10.1016/S0079-6425(99)00007-9
[21] R. Z. Valiev and T. G. Langdon, “Principles of EqualChannel Angular Pressing as a Processing Tool for Grain Refinement,” Progress in Materials Science, Vol. 51, No. 7, 2006, pp. 881-981. doi:10.1016/j.pmatsci.2006.02.003
[22] Y. Iwahashi, Z. Horita, M. Nemoto and T. G. Langdon, “An Investigation of Microstructural Evolution during Equal-Channel Angular Pressing,” Acta Materialia, Vol. 45, No. 11, 1997, pp. 4733-4741. doi:10.1016/S1359-6454(97)00100-6
[23] Y. Iwahashi, Z. Horita, M. Nemoto and T. G. Langdon, “The Process of Grain Refinement in Equal-Channel Angular Pressing,” Acta Materialia, Vol. 46, No. 9, 1998, pp. 3317-3331. doi:10.1016/S1359-6454(97)00494-1
[24] A. Mishra, V. Richard, F. Gregori, R. J. Asaro and M. A. Meyers, “Microstructural Evolution in Copper Processed by Severe Plastic Deformation,” Materials Science and Engineering A, Vol. 410-411, 2005, pp. 290-298. doi:10.1016/j.msea.2005.08.201
[25] R. E. Reed-Hill, J. P. Hirth and H. C. Rogers, “Deformation Twinning,” Gordon and Breach, New York, 1964, p. 7.
[26] T. H. Blewitt, R. R. Coltman and J. K. Redman, “LowTemperature Deformation of Copper Single Crystals,” Journal of Applied Physics, Vol. 28, No. 6, 1957, pp. 651-660. doi:10.1063/1.1722824
[27] J. W. Christian and S. Mahajan, “Deformation Twinning,” Progress in Materials Science, Vol. 39, No. 1-2, 1995, pp. 1-157. doi:10.1016/0079-6425(94)00007-7
[28] A. Rohatgi, S. K. Vecchio and T. G. Gray III, “The Influence of Stacking Fault Energy on the Mechanical Behavior of Cu and Cu-Al Alloys: Deformation Twinning, Work Hardening, and Dynamic Recovery,” Metallurgical and Materials Transactions A, Vol. 32, No. 1, 2001, pp. 135-145. doi:10.1007/s11661-001-0109-7
[29] F. J. Humphreys and M. Hatherly, “Recrystallization and Related Annealing Phenomena,” Elsevier Ltd., Oxford, 2004, pp. 261-266.

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.