Macrophage sequestration of HIV-1 enhances homeostatic-related systems in promoting viral spread and replication


Decisive modulatory systems of compromise and systems of dynamic turnover in lymphoid cells and macrophages are activated by repeated bursts of viremia and as promotional schemes of representation of subsequent spread and replication of HIV-1. In such operative systems of micro-environmental conditioning and reconditioning, a significant mechanism towards the turnover of specific cell-types occurs within context of sequestration within macrophages and circulating monocytes. Dendritic cells in germinal follicles and within specific organs such as the Langerhans cells of the skin are allied to dysfunctionality of such cellular subtypes as exemplified by the resident microglia of the central nervous system. Decisive perturbation in cell-type number and in dysfunctional activation indicate an exquisite modulatory role for HIV-1 in promoting homeostatic-related mechanisms within organs and tissues towards utilization in terms of viral dynamics and cytokine operability. In such manner, HIV-1 replication is itself a system of promotion in spread of viruses across cell-type and host cell specificities that tend to characterize and recharacterize systems of cytokine network operability in particular.

Share and Cite:

Agius, L. (2013) Macrophage sequestration of HIV-1 enhances homeostatic-related systems in promoting viral spread and replication. Advances in Bioscience and Biotechnology, 4, 1-5. doi: 10.4236/abb.2013.47A1001.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] Li, J., Wang, Y., Wang, X., Ye, L., Zhou, Y., Persidsky, Y. and Ho, W. (2013) Immune activation of human brain microvascular endothelial cells inhibits HIV replication in macrophages. Blood, 121, 2934-2942.
[2] Morris, D., Guerra, C., Khurasany, M., Guilford, F., Saviola, B., Huang, Y., et al. (2013) Glutathione supplementation improves macrophage functions in HIV. Journal of Interferon & Cytokine Research, 33, 270-279. doi:10.1089/jir.2012.0103
[3] Vicenzi, E., Lio, P. and Poli, G. (2013) The puzzling role of CXCR4 in human immunodeficiency virus infection. Theranostics, 3, 18-25. doi:10.7150/thno.5392
[4] Zha, W., Wang, G., Xu, W., Liu, X., Wang, Y., Zha, B.S., et al. (2013) Inhibition of P-glycoprotein by HIV protease inhibitors increases intracellular accumulation of berberine in murine and human macrophages. PLoS One, 8, Article ID: e54349. doi:10.1371/journal.pone.0054349
[5] Vicenzi, E. and Poli, G. (2013) Novel factors interfering with human immunodeficiency virus-type 1 replication in vivo and in vitro. Tissue Antigens, 81, 61-71. doi:10.1111/tan.12047
[6] Buitendijk, M., Eszterhas, S.K. and Howell, A.L. (2013) Gardiquimod: A toll-like receptor-7 agonist that inhibits HIV type 1 infection of human macrophages and activated T cells. AIDS Research and Human Retroviruses, 29, 907-918. doi:10.1089/aid.2012.0313
[7] Blanchet, F.P., Stalder, R., Czubala, M., Lehmann, M., Rio, L., Mangeat, B., et al. (2013) TLR-4 engagement of dendritic cells confers a BST-2/tetherin-mediated restriction of HIV-1 infection to CD4+ T cells across the virological synapse. Retrovirology, 10, 24.
[8] Hartmann, S., Jakobus, C., Rengsti, B., Doring, C., Newrzela, S., Brodt, H.R., et al. (2013) Spindle-shaped CD163+ resetting macrophages replace CD4+ T-cells in HIV-related classical Hodgkin lymphoma. Modern Pathology. doi:10.1038/modpathol.2012.217
[9] Sturdevant, C.B., Dow, A., Jabara, C.B., Joseph, S.B., Schnell, G., Takamune, N., et al. (2012) Central nervous system compartmentalization of HIV-1 subtype C variants early and late in infection in young children. PLOS Pathogens, 8, Article ID: e1003094. doi:10.1371/journal.ppat.1003094
[10] Cantres-Rosario, Y., Plaud-Valentin, M., Gerena, Y., Skolasky, R.L., Wojna, V. and Melendez, L.M. (2013) Cathepsin B and cystatin B in HIV-seropositive women are associated with infection and HIV-1-associated neurocognitive disorders. AIDS, 27, 347-356. doi:10.1097/QAD.0b013e32835b3e47
[11] Wie, S.H., Du, P., Luong, T.Q., Rought, S.E., Beliakova Bethell, N., Lozach, J., Corbell, J., et al. (2013) HIV down regulates interferon-stimulated genes in primary macrophages. Journal of Interferon & Cytokine Research, 33, 90-95. doi:10.1089/jir.2012.0052
[12] Gavegnano, C., Detorio, M.A., Bassit, L., Hurwitz, S.J., North, T.W. and Schinazi, R.F. (2013) Cellular pharmacology and potency of HIV-1 nucleoside analogs in primary human macrophages. Antimicrob Agents Chemother, 57, 1262-1269. doi:10.1128/AAC.02012-12
[13] Amie, S.M., Noble, E. and Kim, B. (2013) Intracellular nucleotide levels and the control of retroviral infections. Virology, 436, 247-254.
[14] Lopez, M., San Roman, J., Estrada, V., Vispo, E., Blanco, F. and Soriano, V. (2012) Endothelial dysfunction in HIV infection—The role of circulating endothelial cells, microparticles, endothelial progenitor cells and macrophages. AIDS Reviews, 14, 223-230.
[15] Aggarwal, A., McAllery, S. and Turville, S.G. (2013) Revising the role of myeloid cells in HIV pathogenesis. Current HIV/AIDS Reports, 10, 3-11. doi:10.1007/s11904-012-0149-1
[16] Hernandez-Vargas, E.A. and Middleton, R.H. (2013) Modeling the three stages in HIV infection. Journal of Theoretical Biology, 7, 33-40. doi:10.1016/j.jtbi.2012.11.028
[17] Lamers, S.L., Fogel, G.B., Singer, E.J., Salemi, M., Nolan, D.J., Huysentruyt, L.C., et al. (2012) HIV-1 nef in macrophage-mediated disease pathogenesis. International Reviews of Immunology, 31, 432-450. doi:10.3109/08830185.2012.737073
[18] Sisk, J.M., Clements, J.E. and Witwer, K.W. (2012) miRNA profiles of monocyte-lineage cells are consistent with complicated roles in HIV-1 restriction. Viruses, 4, 1844-1864. doi:10.3390/v4101844
[19] Stantchev, T.S., Paciga, M., Lankford, C.R., Schwartzkopff, F., Broder, C.C. and Clouse, K.A. (2012) Cell-type specific requirements for thiol/disulfide exchange during HIV-1 entry and infection. Retrovirology, 9, 97. doi:10.1186/1742-4690-9-97
[20] Chiang, K. and Rice, A.P. (2012) MicroRNA-mediated restriction of HIV-1 in resting CD4+ T cells and monocytes. Viruses, 4, 1390-1409. doi:10.3390/v4091390
[21] Swanstrom, R. and Coffin, J. (2012) HIV-1 pathogenesis: The virus. Cold Spring Harbor Perspectives in Medicine, 2, Article ID: a007443.
[22] Gobell, L.A., Lodge, R. and Tremblay, M.J. (2013) Macropinocytosis-like HIV-1 internalization in macrophages is CCR5 dependent and leads to efficient but delayed degradation in endosomal compartments. Journal of Virology, 87, 735-745. doi:10.1128/JVI.01802-12
[23] Jimenez, V.C., Boolman, T., de Taeye, S.W., van Dort, K.A., Rits, M.A., Hamann, J., et al. (2012) Differential expression of HIV-1 interfering factors in monocyte-derived macrophages timulated with polarizing cytokines or interferons. Scientific Reports, 2, 763. doi:10.1038/srep00763

Copyright © 2023 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.