Thermodynamic Analysis of ZnO Crystal Growth from the Melt


Recently, the efforts in solid-state materials include developing technologies capable of producing ZnO wafers in large dimensions and good quality based device applications. High quality bulk crystals are obtained by growing from high purity the melt. However, the thermochemical properties of ZnO (high melting point and high vapor pressure) make the growth of single crystals difficult. The thermodynamic calculations show that ZnO crystals can be grown from the melt if a suitable dynamic atmosphere composition is used. The oxygen requirement with increasing the temperature can be fulfilled by adding the NO-NO2 gases into the CO2 atmosphere. At ZnO melting point, the oxygen partial pressure of gas mixtures containing CO2-NO-CO-NO2 at Pt = 5 atm reaches to PO2 = 0.29 atm. According to this new thermodynamic result, it would be expected that ZnO crystal could be grown from the melt at lower total pressure comparing to pure CO2.

Share and Cite:

M. Asadian, "Thermodynamic Analysis of ZnO Crystal Growth from the Melt," Journal of Crystallization Process and Technology, Vol. 3 No. 3, 2013, pp. 75-80. doi: 10.4236/jcpt.2013.33012.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] C. Liu, F. Yun and H. Morkoc, “Ferromagnetism of ZnO and GaN: A Review,” Journal of Materials Science: Materials in Electronics, Vol. 16, No. 9, 2005, pp. 555-597.
[2] T. Muranaka, Y. Kikuchi, T. Yoshizawa, N. Shirakawa and J. Akimitsu, “Superconductivity in Carrier-Doped Silicon Carbide,” Science and Technology of Advanced Materials, Vol. 9, No. 4, 2008, p. 8. doi:10.1088/1468-6996/9/4/044204
[3] A. Janotti and C. G. Walle, “Fundamentals of Zinc,oxide as a Semiconductor,” Reports on Progress in Physics, Vol. 72, No. 12, 2009, p. 29. doi:10.1088/0034-4885/72/12/126501
[4] T. Fukuda and D. Ehrentraut, “Prospects for the Ammonothermal Growth of Large GaN Crystal,” Journal of Crystal Growth, Vol. 305, No. 2, 2007, pp. 304-310. doi:10.1016/j.jcrysgro.2007.04.010
[5] M. M. C. Chou, L. Chang, H. Y. Chung, T. H. Huang, J. Wu and C. W. Chen, “Growth and Characterization of Nonpolar ZnO Epitaxial Film on γ-LiAlO2 Substrate by Chemical Vapor Deposition,” Journal of Crystal Growth, Vol., 308, No. 2, 2007, pp. 412-416. doi:10.1016/j.jcrysgro.2007.08.019
[6] S. J. Pearton , D. P. Norton, K. Ip, Y.W. Heo and T. Steiner, “Recent Progress in Processing and Properties of ZnO,” Progress in Materials Science, Vol. 50, No. 3, 2005, pp. 293-340. doi:10.1016/j.pmatsci.2004.04.001
[7] R. Triboulet, “International Conference on Solid State Crystals 2000: Growth, Characterization and Applications of single crystal,” SPIE, Vol. 4412, Poland, 2001.
[8] D. M. Bagnall, Y. F. Chen, Z. Zhu, T. Yao, M. Y. Shen and T. Goto, “High Temperature Excitonic Stimulated Emission from ZnO Epitaxial Layers,” Applied Physics Letters, Vol. 73, No. 8, 1997, pp. 1038-1041.
[9] J. Cheng, R. Guo and Q. M. Wang, “Zinc Oxide Single-Crystal; Microtubes,” Applied Physics Letters, Vol. 10, No. 24, 2004, pp. 5140-5143. doi:10.1063/1.1825067
[10] D Klimm, D Schulz and S Ganschow,” Growth of Bulk ZnO,” Comprehensive Semiconductor Science and Technology, Vol. 3, 2011, pp. 302-338. doi:10.1016/B978-0-44-453153-7.00095-X
[11] D. Klimm, S. Ganschow, D. Schulz and R. Fornari, “The Growth of ZnO Crystals from the Melt,” Journal of Crystal Growth, Vol. 310, No. 12, 2008, pp. 3009-3013. doi:10.1016/j.jcrysgro.2008.02.027
[12] Suscavage, M. Harris, D. Bliss, P. Yip, S. Q. Wang, D. Schwall, L. Bouthillette, J. Bailey, M. Callahan, D. C. Look, D. C. Reynolds, R. L. Jones and C. W. Litton, “High Quality Hydrothermal ZnO Crystals,” Journal of Nitride Semiconductor Research, Vol. 537, 1998. doi:10.1557/PROC-537-G3.40
[13] D. C. Look, D. C. Reynolds, C. W. Litton, R. L. Jones, D. B. Eason and G. Cantwell, “Characterization of Homoepitaxial p-Type ZnO Grown by Molecular Beam Epitaxy,” Applied Physics Letters, Vol. 81, No. 10, 2002, pp. 1830-1833. doi:10.1063/1.1504875
[14] E. Ohshima, H. Ogino, I. Niikura, “Growth of the 2-in-Size Bulk ZnO Single Crystals by the Hydrothermal Method,” Journal of Crystal Growth, Vol. 260, No. 1-2, 2004, pp.166-170. doi:10.1016/j.jcrysgro.2003.08.019
[15] K. Maeda, M. Sato, I. Niikura and T. Fukuda, “Growth of 2 Inch ZnO Bulk Single Crystal by the Hydrothermal Method,” Semiconductor Science and Technology, Vol. 20, No. 4, 2005, p. 49. doi:10.1088/0268-1242/20/4/006
[16] Ehrentraut, H. Sato, Y. Kagamitani, H. Sato, A. Yoshi-kawa and T. Fukuda, “Solvothermal Growth of ZnO,” Progress in Crystal Growth and Characterization of Materials, Vol. 52, No. 4, 2006, p. 280. doi:10.1016/j.pcrysgrow.2006.09.002
[17] B. J. Coppa, C. C. Fulton, S. M. Kiesel, R. F. Davis, C. Pandarianth, J. E. Burnette, R. J. Nemanich and D. J. Smith, “Structural, Microstructural, and Electrical Properties of Gold Films and Schottky Contacts on Remote Plasma-Cleaned, n-Type ZnO{0001} Surfaces,” Journal of Applied Physics, Vol. 97, No. 10, 2005, Article ID: 103517. doi:10.1063/1.1898436
[18] K. Jacobs, D. Schulz, D. Klimm and S. Ganschow, “Melt Growth of ZnO Bulk Crystals in Ir Crucibles,” Solid State Sciences, Vol. 12, No. 3, 2009, pp. 307-310. doi:10.1016/j.solidstatesciences.2009.05.015
[19] J. Nause and B. Nemeth, “Pressurized Melt Growth of ZnO Boules,” Semiconductor Science and Technology, Vol. 20, No. 4, 2005, p. 45. doi:10.1088/0268-1242/20/4/005
[20] D. R. Gaskell, “Introduction to the Thermodynamics of Materials,” 4th Edition, Taylor & Francis, New York, 2003.
[21] H. J. T. Elingham, “Industrial Applications of Electrolysis,” Journal of the Society of Chemical Industry, Vol. 63, No. 5, 1944, p. 125. doi:10.1002/jctb.5000630501
[22] M. Binnewies and E. Milke, “Thermochemical Data of Elements and Compounds,” 3rd Edition, Wiley-VCH Verlag GmbH, Weinheim, 2008.
[23] R. Weiland, D. F. Lupton, B. Fischer, J. Merker, C. Scheckenbach and J. Witte, “High-Temperature Mechanical Properties of the Platinum Group Metals,” Platinum Metals Review, Vol. 50, No. 4, 2006, pp. 158-170. doi:10.1595/147106706X154198
[24] Z. Galazka, R. Uecker, K. Irmscher, M. Albrecht, D. Klimm, M. Pietsch, M. Brützam, R. Bertram, S. Ganschow and R. Fornari, “Czochralski Growth and Characterization of β-Ga2O3 Single Crystals,” Crystal Research and Technology Vol. 45, No. 12, 2010, pp. 1229-1236. doi:10.1002/crat.201000341
[25] M. Asadian, N. Mirzaei, H. Saeedi, M. Najafi and I. M. Asl, “Improvement of Nd:GGG Crystal Growth Process under Dynamic Atmosphere Composition,” Solid State Sciences, Vol. 14, No. 2, 2012, pp. 262-268. doi:10.1016/j.solidstatesciences.2011.11.030
[26] W. Hornfeck, S. Freistein and B. Harbrecht, “Ir7Zn19 and IrZn3, Two New γ-Brass-Related Phases Classified as AlB2-Type Derivatives with Ordered Vacancies,” Zeitschrift für Anorganische und Allgemeine Chemie, Vol. 630, No. 19, 2004, p. 1370.
[27] S. Ganschow, D. Schulz, D. Klimm, R. Bertram and R. Uecker, “Application of Predominance Diagrams in Melt Growth of Oxides,” Crystal Research and Technology Vol. 45, No. 12, 2010, pp. 1219-1224. doi:10.1002/crat.201000358

Copyright © 2022 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.