On Infrasound Standards, Part 1 Time, Frequency, and Energy Scaling

Abstract

A standardized, self-similar, multiresolution algorithm is developed for scaling infrasonic signal time, frequency, and power within the framework of fractional octave bands. This work extends accepted fractional octave band schemas to 0.001 Hz (1000 s periods) to facilitate the analysis of broadband signals as well as the deep acoustic-gravity and Lamb waves captured by the global infrasound network. The Infrasonic Energy, Nth Octave (INFERNO) multiresolutionEnergy Estimator is applied to computing the total acoustic energy of the Russian meteor signature recorded in the 45mHz-9 Hz frequency band by IMS array 131KZ, Kazakhstan.

Share and Cite:

M. A. Garces, "On Infrasound Standards, Part 1 Time, Frequency, and Energy Scaling," InfraMatics, Vol. 2 No. 2, 2013, pp. 13-35. doi: 10.4236/inframatics.2013.22002.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] D. R. Christie and P. Campus, “The IMS Infrasound Network: Design and Establishment of Infrasound Stations,” In: A. Le Pichon, E. Blanc and A. Hauchecorne, Eds., Infrasound Monitoring for Atmospheric Studies, Springer, New York, 2010, pp. 29-75. doi:10.1007/978-1-4020-9508-5_2
[2] A. Le Pichon, E. Blanc and A. Hauchecorne, “Infrasound Monitoring for Atmospheric Studies,” Springer, New York, 2010.
[3] D. H. Johnson and D. E. Dudgeon, “Array Signal Processing,” Prentice-Hall, Upper Saddle River, 1993.
[4] C. D. de Groot-Hedlin, M. A. H. Hedlin and K. T. Walker, “Detection of Gravity Waves across the USArray: A Case Study,” Earth and Planetary Sciences Letters, 2013, in review.
[5] M. A. Garcés, R. A. Hansen and K. Lindquist, “Travel Times for Infrasonic Waves Propagating in a Stratified Atmosphere,” Geophysical Journal International, Vol. 135, No. 1, 1998, pp. 255-263. doi:10.1046/j.1365-246X.1998.00618.x
[6] D. Brown and M. Garcés, “Ray Tracing in an Inhomogeneous Atmosphere with Winds,” In: D. Havelock, S. Kuwano and M. Vorlander, Eds., Handbook of Signal Processing in Acoustics, Springer, New York, 2008, pp. 1437-1460. doi:10.1007/978-0-387-30441-0_78
[7] M. Garcés, C. Hetzer, K. Lindquist, R. Hansen, J. Olson, C. Wilson, D. Drob and M. Picone, “Infrasonic Source Location of the April 23, 2001, Bolide Event,” 23rd Annual DTRA/NNSA Seismic Research Review, Jackson Hole, 1-5 October 2001.
[8] M. Garcés and C. Hetzer, “Evaluation of Infrasonic Detection Algorithms,” 24th Annual DTRA/NNSA Seismic Research Review, Ponte Vedra, 17-19 September 2002.
[9] M. Garcés, H. Bass, D. Drob, C. Hetzer, M. Hedlin, A. Le Pichon, K. Lindquist, R. North and J. Olson, “Forensic Studies of Infrasound from Massive Hypersonic Sources,” EOS Transactions, Vol. 85, No. 43, 2004, pp. 433-441. doi:10.1029/2004EO430002
[10] D. Fee, R. Waxler, J. Assink, Y. Gitterman, J. Given, J. Coyne, P. Maille, M. Garces, D. Drob, D. Kleinert, R. Hofstetter and P. Grenard, “Overview of the 2009 and 2011 Sayarim Infrasound Calibration Experiments,” Journal of Geophysical Research: Atmospheres, 2013. doi:10.1002/jgrd.50398
[11] M. Garcés and A. Le Pichon, “Infrasound from Earthquakes, Tsunamis and Volcanoes,” In: R. A. Meyers, Ed., Encyclopedia of Complexity and Systems Science, Springer, Berlin, 2009, pp. 663-679.
[12] A. Le Pichon, L. Ceranna and J. Vergoz, “Incorporating Numerical Modeling into Estimates of the Detection Capability of the IMS Infrasound Network,” Journal of Geophysical Research: Atmospheres, Vol. 117, No. D5, 2012. doi:10.1029/2011JD016670
[13] American National Standard, “Estimating Air Blast Characteristics for Single Point Explosions in Air, with a Guide to Evaluation of Atmospheric Propagation Effects,” ANSI S2.20-1983 (ASA 20-1983), 1983.
[14] D. Bolster, R. Hershberger and R. Donnelly, “Dynamic Similarity, the Dimensionless Science,” Physics Today, Vol. 64, No. 9, 2011, 42 p. doi:10.1063/PT.3.1258
[15] B. J. Merchant and D. M. Hart, “Component Evaluation Testing and Analysis Algorithms,” Sandia Report SAND 2011-8265, Unlimited Release, Sandia National Laboratories, Albuquerque, 2011.
[16] W. Tempest, “Infrasound and Low Frequency Vibration,” Academic Press, London, 1976.
[17] Y. Cansi and A. Le Pichon, “Infrasound Event Detection using the Progressive Multi-Channel Correlation Algorithm,” In: D. Havelock, S. Kuwano and M. Vorlander, Eds., Handbook of Signal Processing in Acoustics, Springer, New York, 2008, pp. 1424-1435. doi:10.1007/978-0-387-30441-0_77
[18] R. S. Matoza, M. Landès, A. Le Pichon, L. Ceranna and D. Brown, “Coherent Ambient Infrasound Recorded by the International Monitoring System,” Geophysical Research Letters, Vol. 40, No. 2, 2013, pp. 429-433. doi:10.1029/2012GL054329
[19] American National Standard, “Preferred Frequencies, Frequency Levels, and Band Numbers for Acoustical Measurements,” ANSI S1.6-1984 (ASA 53-1984), 1984.
[20] International Standard on Acoustics, “Frequency-Weighting Characteristics for Infrasound Measurements,” ISO 7196:1995 (E), 1995.
[21] T. Mikumo, M. Garcés, T. Shibutani, W. Morii, T. Okawa and Y. Ishihara, “Propagating of Acoustic-Gravity Waves from the Source Region of the 2011 Great Tohoku Earthquake (MW = 9.0),” Journal of Geophysical Research: Solid Earth, Vol. 118, No. 4, 2013, pp. 1534-1545. doi:10.1002/jgrb.50143
[22] J. Marty, D. Ponceau and F. Dalaudier, “Using the International Monitoring System Infrasound Network to Study Gravity Waves,” Geophysical Research Letters, Vol. 37, No. 19, 2010. doi:10.1029/2010GL044181
[23] J. E. Stopa, K. F. Cheung, H. Tolman and A. Chawla, “Patterns and Cycles in the Climate Forecast System Reanalysis Wind and Wave Data,” Ocean Modeling, 2012, in press. doi:10.1016/j.ocemod.2012.10.005
[24] American National Standard, “Specification for Octave-Band and Fractional-Octave-Band Analog and Digital Filters,” ANSI S1.11-2004, 2004.
[25] D. Gabor, “Theory of Communication, Part 3,” Electrical Engineers, Vol. 93, No. 26, 1946, pp. 445-457.
[26] L. Liszka, “Cognitive Information Processing in Space Physics and Astrophysics,” Pachart Publishing House, Tucson, 2003.
[27] American National Standard, Measurement of Sound Pressure Levels in Air,” ANSI S1.13-2005 (R 2010), 2010.
[28] American National Standard, “Guidelines for the Preparation of Standard Procedures to Determine the Noise Emission from Sources,” ANSI S12.1-1983 (ASA 49-1983), 1983.
[29] American National Standard, “Methods for Measurement of Impulse Noise,” ANSI S12.7-1986 (ASA 62-1986), 1986.
[30] American National Standard, “Specification for Sound Level Meters,” ANSI S1.4-1983 (ASA 47-1983), 1983.
[31] J. Chatillon, “Exposure Limits for Infrasounds and Ultrasounds,” Etude Bibliographique, INRS-Hygièneetsécurité du Travail-Cahiers de Notes Documentaires-2e Trimester, 2006.
[32] B. Truax, “The World Soundscape Project’s Handbook for Acoustic Ecology,” Simon Fraser University, and ARC Publications, Vancouver, 1978.
[33] American National Standard, “Quantities and Procedures for Description and Measurement of Environmental Sound. Part 4: Noise Assessment and Prediction of Long-Term Community Response,” ANSI S12.9-2005/Part 4, 2005.
[34] M. Niessen, C. Cance and D. Dubois, “Categories for Soundscape: Toward a Hybrid Classification,” Proceedings of Inter Noise, Lisbon, 13-16 June 2010.
[35] M. A. Garcés, D. Fee and R. Matoza, “Volcano Acoustics,” In: S. A. Fagents, R. M. C. Lopes and T. K. P. Gregg, Eds., Modeling Volcanic Processes: The Physics and Mathematics of Volcanism, Cambridge University Press, Cambridge, 2013, pp. 359-383. doi:10.1017/CBO9781139021562.016
[36] American National Standard, “Procedures for Outdoor Measurement of Sound Pressure Level,” ANSI S12.18-1994 (ASA 110-1994), 1994.
[37] L. E. Kinsler, A. R. Frey, A. B. Coppens and J. V. Sanders, “Fundamentals of Acoustics,” 3rd Edition, John Wiley and Sons, Hoboken, 1982.
[38] A. D. Pierce, “Acoustics—An introduction to Its Physical Principles and Applications,” 2nd Printing, McGraw-Hill, New York, 1991.
[39] M. Bahtiarian, “Taking American National Standards to the International Level,” Acoustics Today, Vol. 8, No. 1, 2012, pp. 25-28.
[40] A. V. Oppenheim and R. W. Schafer, “Discrete-Time Signal Processing,” Prentice Hall, Upper Saddle River, 1989.
[41] J. R. Bowman, G. E. Baker and M. Bahavar, “Ambient Infrasound Noise,” Geophysical Research Letters, Vol. 32, No. 9, 2005. doi:10.1029/2005GL022486
[42] J. R. Bowman, G. Shields and M. S. O’Brien, “Infrasound Station Ambient Noise Estimates and Models 2003-2006 (Erratum),” Infrasound Technology Workshop, Brasilia, 2-6 November 2009.
[43] D. Brown, L. Ceranna, M. Prior, P. Mialle and R. J. Le Bras, “The IDC Seismic, Hydroacoustic, and Infrasound Global Low and High Noise Models,” Pure and Applied Geophysics, 2012. doi:10.1007/s00024-012-0573-6
[44] A. Le Pichon, L. Ceranna, C. Pilger, P. Mialle, D. Brown, P. Herry and N. Brachet, “2013 Russian Fireball Largest Ever Detected by CTBTO Infrasound Sensors,” Geophysical Research Letters, 2013. doi:10.1002/grl.50619

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.