Share This Article:

Systematic analysis of diabetes- and glucose metabolism-related proteins and its application to Alzheimer’s disease

Abstract Full-Text HTML Download Download as PDF (Size:2698KB) PP. 615-644
DOI: 10.4236/jbise.2013.66078    3,446 Downloads   5,325 Views   Citations


Alzheimer disease has been defined as Type 3 Diabetes due to their shared metabolic profiles. Like our previously research, results of Alzheimer’s disease and other neurodegenerative diseases, systematic analysis of diabetes- and glucose metabolism-related proteins also provides help in the treatment of Alzheimer’s patients. Some interesting results indicate that diabetes-related proteins (DRPs) are rich in Lys and the content of Trp can distinguish between type 1 and type 2 diabetes mellitus in particular, while glucose metabolism-related proteins (GMRPs) possess Leurich and Trp-poor character. Moreover, the usage biases of codons depend on GC contents to a great extent, in concord with all codons of the highly expressed genes with the terminal of C/G. Especially, the deficit of CpG dinucleotides is largely attributed to the hypermutability of methylated CpGs to UpGs by the mutational pressure. Besides a common node insulin receptor, there are some similar node proteins, such as glucose transporter member, protein tyrosine phosphatase, and adipose metabolism signal protein. The sharing proteins involve glucagon, amylin, insulin, PPARγ, angiopoietin, PC-1/ENPP1, and adiponectin mediated signal pathway. Meanwhile, the gene sequences of node proteins contained the binding sites of 37 transcription factors divide into four kinds of superclasses. Additionally, BAD complex can integrate pathways of glucose metabolism and apoptosis by BH3 domain of BAD directly interacting with GK as well as GK binding with the consensus motif [G]-[1]-[K]-[2]-[S/T] or [L/M]-[R/K]-[2]-[T] of PP1 or WAVE1. This facilitates the therapies for diabetes mellitus as well as Alzheimer’s disease.

Conflicts of Interest

The authors declare no conflicts of interest.

Cite this paper

Yang, J. , Li, S. and Liu, Y. (2013) Systematic analysis of diabetes- and glucose metabolism-related proteins and its application to Alzheimer’s disease. Journal of Biomedical Science and Engineering, 6, 615-644. doi: 10.4236/jbise.2013.66078.


[1] Ahmad, W. (2013) Overlapped metabolic and therapeutic links between alzheimer and diabetes. Molecular Neurobiology, 47, 399-424. doi:10.1007/s12035-012-8352-z
[2] Cagnin, M., Ozzano, M., Bellio, N., Fiorentino, I., Follo, C. and Isidoro, C. (2012) Dopamine induces apoptosis in APPswe-expressing Neuro2A cells following Pepstatinsensitive proteolysis of APP in acid compartments. Brain Research, 30, 102-107. doi:10.1016/j.brainres.2012.06.025
[3] Kelliher, M., Fastbom, J., Cowburn, R.F., Bonkale, W., Ohm, T.G., Ravid, R., Sorrentino, V. and O’Neill, C. (1999) Alterations in the ryanodine receptor calcium release channel correlate with Alzheimer’s disease neurofibrillary and β-amyloid pathologies. Neuroscience, 92, 499-513. doi:10.1016/S0306-4522(99)00042-1
[4] Walsh, D.M., Minogue, A.M., Frigerio, C.S., Fadeeva, J.V., Wasco, W. and Selkoe, D.J. (2007) The APP family of proteins: Similarities and differences. Biochemical Society Transactions, 35, 416-420. doi:10.1042/BST0350416
[5] Musselman, D.L., Betan, E., Larsen, H. and Phillips, L.S. (2003) Relationship of depression to diabetes types 1 and 2: Epidemiology, biology, and treatment. Biological Psychiatry, 54, 317-329. doi:10.1016/S0006-3223(03)00569-9
[6] Zinman, B. (1998) Glucose control in type 1 diabetes: From conventional to inten-sive therapy. Clinical Cornerstone, 1, 29-38. doi:10.1016/S1098-3597(98)90016-3
[7] Pinero-Pilona, A. and Raskin, P. (2001) Idiopathic type 1 diabetes. Journal of Diabetes and Its Complications, 15, 328-335. doi:10.1016/S1056-8727(01)00172-6
[8] Gloyn, A.L. (2003) The search for type 2 diabetes genes. Ageing Research Reviews, 2, 111-127. doi:10.1016/S1568-1637(02)00061-2
[9] Oiknine, R. and Mooradian, A.D. (2003) Drug therapy of diabetes in the elderly. Biomedicine & Pharmacotherapy, 57, 231239. doi:10.1016/S0753-3322(03)00052-0
[10] Wang, X.N., Yang, J., Xu, P.Y., Chen, J., Zhang, D., Sun, Y. and Huang, Z.M. (2011) Construction of drug screening cell model and application to new compounds interfering production and accumulation of beta-amyloid by inhibiting γ-secretase. In: Chang, R.C.-C., Ed., Advanced Understanding of Neurodegenerative Diseases, InTech, Croatia, 169-192.
[11] Yang, J., Zhu, T.Y., Jiang, Z.X., Chen, C., Wang, Y.L., Zhang, S., Jiang, X.F., Wang, T.T., Wang, L., Xia, W.H., Li, L., Chen, J.J., Wang, J.Y., Wang, W.W. and Zheng, W.J. (2010) Codon usage biases in alzheimer’s disease and other neurodegenerative diseases. Protein & Peptide Letters, 17, 630-645. doi:10.2174/092986610791112666
[12] Yang, J. and Jiang, X.F. (2010) A novel approach to predict protein-protein interactions related to alzheimer’s disease based on complex network. Protein & Peptide Letters, 17, 356-366. doi:10.2174/092986610790780323
[13] Riboulet-Chavey, A., Pierron, A., Durand, I., Murdaca, J., Giudicelli, J. and Van Obberghen, E. (2006) Methylglyoxal impairs the insulin signaling pathways independently of the formation of intracellular reactive oxygen species. Diabetes, 55, 1289-1299. doi:10.2337/db05-0857
[14] Karlsson, H.K., Ahlsen, M., Zierath, J.R., Wallberg-Henriksson, H. and Koistinen, H.A. (2006) Insulin signaling and glucose transport in skeletal muscle from first-degree relatives of type 2 diabetic patients. Diabetes, 55, 12831288. doi:10.2337/db05-0853
[15] Yano, A., Kubota, M., Iguchi, K., Usui, S. and Hirano, K. (2006) Buformin suppresses the expression of glyceraldehyde 3-phosphate dehydrogenase. Bibliographic Information, 29, 1006-1009. doi:10.1248/bpb.29.1006
[16] Morino, K., Petersen, K.F., Dufour, S., Befroy, D., Frattini, J., Shatzkes, N., Neschen, S., White, M.F., Bilz, S., Sono, S., Pypaert, M. and Shulman, G.I. (2005) Reduced mitochondrial density and increased IRS-1 serine phosphorylation in muscle of insulin-resistant offspring of type 2 diabetic parents. The Journal of Clinical Investigation, 115, 3587-3593. doi:10.1172/JCI25151
[17] Herman, M.A. and Kahn, B.B. (2006) Glucose transport and sensing in the maintenance of glucose homeostasis and metabolic harmony. The Journal of Clinical Investigation, 116, 1767-1775. doi:10.1172/JCI29027
[18] Bouzakr, K., Zachrisson, A., Al-Khalili, L., Zhang, B.B., Koistinen, H.A., Krook, A. and Zierath, J.R. (2006) Sirna-based gene silencing reveals specialized roles of IRS-1/Akt2 and IRS-2/Akt1 in glucose and lipid metabolism in human skeletal muscle. Cell Metabolism, 4, 89-96. doi:10.1016/j.cmet.2006.04.008
[19] Sharma, A., Chavali, S., Mahajan, A., Tabassum, R., Banerjee, V., Tandon, N. and Bharadwaj, D. (2005) Genetic association, post-translational modification, and protein-protein interactions in Type 2 diabetes mellitus. Molecular Cell Proteomics, 4, 1029-1037. doi:10.1074/mcp.M500024-MCP200
[20] Marzban, L., Trigo-Gonzalez, G. and Verchere, C.B. (2005) Processing of proislet amyloid polypeptide in the constitutive and regulated secretory pathways of beta cells. Molecular Endocrinology, 19, 2154-2163. doi:10.1210/me.2004-0407
[21] Li, L. and Holscher, C. (2007) Common pathological processes in alzheimer disease and type 2 diabetes: A review. Brain Research Reviews, 56, 384-402. doi:10.1016/j.brainresrev.2007.09.001
[22] Correia, S.C., Santos, R.X., Perry, G., Zhu, X., Moreira, P.I. and Smith, M.A, (2011) Insulin-resistant brain state: The culprit in sporadic alzheimer’s disease? Ageing Research Reviews, 10, 264-273. doi:10.1016/j.arr.2011.01.001
[23] Casley, C.S., Land, J.M., Sharpe, M.A., Clark, J.B., Duchen, M.R. and Canevari, L. (2002) β-Amyloid fragment 25-35 causes mitochondrial dysfunction in primary cortical neurons. Neurobiology of Disease, 10, 258-267. doi:10.1006/nbdi.2002.0516
[24] Zeng, K.W., Wang, X.M., Ko, H., Kwon, H.C., Cha, J.W. and Yang, H.O. (2011) Hyperoside protects primary rat cortical neurons from neurotoxicity induced by amyloid β-protein via the PI3K/Akt/Bad/BclXL-regulated mitochondrial apoptotic pathway. European Journal of Pharmacology, 672, 45-55. doi:10.1016/j.ejphar.2011.09.177
[25] Danial, N.N., Gramm, C.F., Scorrano, L., Zhang, C-Y., Krauss, S., Ranger, A.M., Datta, S.R., Greenberg, M.E., Licklider, L.J., Lowell, B.B., Gygi, S.P. and Korsmeyer, S.J. (2003) BAD and glucokinase reside in a mitochondrial complex that integrates glycolysis and apoptosis. Nature, 424, 952-956. doi:10.1038/nature01825
[26] Yang, J., Dong, X.C. and Leng, Y. (2006) Conformation biases of amino acids based on tripeptide microenvironment from PDB database. Journal of Theoretical Biology, 240, 374-384. doi:10.1016/j.jtbi.2005.09.025
[27] Zhan, C.Y., Yang, J., Dong, X.C. and Wang, Y.L. (2007) Molecular modeling of purinergic receptor P2Y12 and interaction with its antagonists. Journal of Molecular Graphics and Modelling, 26, 20-31. doi:10.1016/j.jmgm.2006.09.006
[28] Wright, F. (1990) The ‘effective number of codons’ used in a gene. Gene, 87, 23-29. doi:10.1016/0378-1119(90)90491-9
[29] Sharp, P.M., Tuohy, T. and Mosurski, K. (1986) Codon usage in yeast: Cluster analysis clearly differentiates highly and lowly expressed genes. Nucleic Acids Research, 14, 5125-5143. doi:10.1093/nar/14.13.5125
[30] Ikemura, T. (1981) Correlation between the abundance of Escherichia coli transfer RNAs and the occurrence of the respective codons in its protein genes: A proposal for a synonymous codon choice that is optimal for the E. coli translational system. Journal of Molecular Biology, 151, 389-409. doi:10.1016/0022-2836(81)90003-6
[31] McInerney, J.O. (1998) GCUA: General codon usage analysis. Bioinformatics, 14, 372-373. doi:10.1093/bioinformatics/14.4.372
[32] Yang, J., Dong, X.C. and Leng, Y. (2006) Application of FTTP to alpha-helix or beta-strand motifs. Journal of Theoretical Biology, 242, 199-219. doi:10.1016/j.jtbi.2006.02.014
[33] Sandberg, R., Bränden, C-I., Ernberg, I. and Cöster, J. (2003) Quantifying the species-specificity in genomic signatures, synonymous codon choice, amino acid usage and G+C content. Gene, 311, 35-42. doi:10.1016/S0378-1119(03)00581-X
[34] Sharp, P.M. and Li, W.H. (1986) Codon usage in regulatory genes in Escherichia coli does not reflect selection for “rare” codons. Nucleic Acids Research, 14, 77377749. doi:10.1093/nar/14.19.7737
[35] Ghosh, T.C., Gupta, S.K. and Majumdar, S. (2000) Studies on codon usage in Entamoeba histolytica. International Journal for Parasitology, 30, 715-722. doi:10.1016/S0020-7519(00)00042-4
[36] Zhou, T., Sun, X. and Lu, Z.H. (2006) Synonymous codon usage in environmental chlamydia UWE25 reflects an evolutional divergence from pathogenic chlamydiae. Gene, 368, 117-125. doi:10.1016/j.gene.2005.10.035
[37] Greenacre, M. (1984) Theory and applications of correspondence analysis. Academic Press, London.
[38] Musto, H., Romero, H., Zavala, A., Jannari, K. and Bernardi, G. (1999) Synonymous codon choices in the extremely GC-poor genome of Plasmodium falciparum: Compositional constraints and translational selection. Journal of Molecular Evolution, 49, 27-35. doi:10.1007/PL00006531
[39] Karlin, S. and Burge, C. (1995) Dinucleotide relative abundance extremes: A genomic signature. Trends Genet, 11, 283-290. doi:10.1016/S0168-9525(00)89076-9
[40] Alfonso, V. and Florencio, P. (2002) Computational methods for the prediction of protein interactions. Current Opinion in Structural Biology, 12, 368-373. doi:10.1016/S0959-440X(02)00333-0
[41] Eckmann, J.P. and Moses, E. (2002) Curvature of colinks uncovers hidden thematic layers in the world wide web. Proceedings of the National Academy of Sciences of the United State of Amereica, 99, 5825-5829. doi:10.1073/pnas.032093399
[42] Albert, R., Jeong, H. and Barabási, A-L. (2000) Error and attack tolerance of complex networks. Letters to Nature, 406, 378-382. doi:10.1038/35019019
[43] Ma, J., Zhou, T., Gu, W., Sun, X. and Lu, Z. (2002) Cluster analysis of the codon use frequency of MHC genes from different species. Biosystems, 65, 199-207. doi:10.1016/S0303-2647(02)00016-3
[44] Yang, J. (2010) Molecular modeling of human BAD, a pro-apoptotic Bcl-2 family member, integrating glycolysis and apoptosis. Protein & Peptide Letters, 17, 206-220. doi:10.2174/092986610790226003
[45] Yang, J., Li, J.H., Wang, J. and Zhang, C-Y. (2010) Molecular modeling of BAD complex resided in a mitochondrion integrating glycolysis and apoptosis. Journal of Theoretical Biology, 266, 231-241. doi:10.1016/j.jtbi.2010.06.009
[46] Oxenkrug, G.F. (2010) Metabolic syndrome, age-associated neuroendocrine disorders, and dysregulation of tryptophan-kynurenine metabolism. Annals of the New York Academy of Sciences, 1199, 1-14. doi:10.1111/j.1749-6632.2009.05356.x
[47] Grosjean, H. and Fiers, W. (1982) Preferential codon usage in prokaryotic genes: The optimal codon-anticodon interaction energy and the selective codon usage in efficiently expressed genes. Gene, 18, 199-209. doi:10.1016/0378-1119(82)90157-3
[48] Gupta, S.K. and Ghosh, T.C. (2001) Expressivity is the main factor in dictating the codon usage variation among the genes in Pseudomonas aeruginosa. Gene, 273, 63-70. doi:10.1016/S0378-1119(01)00576-5
[49] Grocock, R.J. and Sharp, P.M. (2002) Synonymous codon usage in Pseudomonas aeruginosa PA01. Gene, 289, 131-139. doi:10.1016/S0378-1119(02)00503-6
[50] Romero, H., Zavala, A. and Musto, H. (2000) Codon usage in Chlamydia trachomatis is the result of strandspecific mutational biases and a complex pattern of selective forces. Nucleic Acids Research, 28, 2084-2090. doi:10.1093/nar/28.10.2084
[51] Tao, P., Dai, L., Luo, M., Tang, F., Tien, P. and Pan, Z. (2009) Analysis of synonymous codon usage in classical swine fever virus. Virus Genes, 38, 104-12. doi:10.1007/s11262-008-0296-z
[52] Akimoto, Y., Miura, Y., Toda, T., Wolfert, M.A., Wells, L., Boons, G.J., Hart, G.W., Endo, T. and Kawakami, H. (2011) Morphological changes in diabetic kidney are associated with increased O-GlcNAcylation of cytoskeletal proteins including α-actinin 4. Clinical Proteomics, 8, 15. doi:10.1186/1559-0275-8-15
[53] Ohtsubo, K., Chen, M.Z., Olefsky, J.M. and Marth, J.D. (2011) Pathway to diabetes through attenuation of pancreatic beta cell glycosylation and glucose transport. Nature Medicine, 17, 1067-1075. doi:10.1038/nm.2414
[54] Rogers, C., Moukdar, F., McGee, M.A., Davis, B., Buehrer, B.M., Daniel, K.W., Collins, S., Barakat, H. and Robidoux, J. (2012) EGF receptor (ERBB1) abundance in adipose tissue is reduced in insulin-resistant and type 2 diabetic women. The Journal of Clinical Endocrinology & Metabolism, 97, E329-E340. doi:10.1210/jc.2011-1033
[55] Monteiro, L.Z. and Foss-Freitas, M.C., Júnior Montenegro, R.M. and Foss, M.C. (2012) Body fat distribution in women with familial partial lipodystrophy caused by mutation in the lamin A/C gene. Indian Journal of Endocrinology Metabolism, 16, 136-138. doi:10.4103/2230-8210.91209
[56] Kitagawa, M., Takasawa, S., Kikuchi, N., Itoh, T., Teraoka, H., Yamamoto, H. and Okamoto, H. (1991) Rig encodes ribosomal protein S15. The primary structure of mammalian ribosomal protein S15. FEBS Letters, 283, 210-214. doi:10.1016/0014-5793(91)80590-Y
[57] Ma, X.W., Chang, Z.W., Qin, M.Z., Sun, Y., Huang, H.L., He, Y. (2009) Decreased expression of complement regulatory proteins, CD55 and CD59, on peripheral blood leucocytes in patients with type 2 diabetes and macrovascular diseases. Chinese Medical Journal (English Edition), 122, 2123-2128.
[58] Lachaud, A.A., Auclair-Vincent, S., Massip, L., AudetWalsh, E., Lebel, M. and Anderson, A. (2010) Werner’s syndrome helicase participates in transcription of phenolbarbital-inducible CYP2B genes in rat and mouse liver. Biochemical Pharmacology, 79, 463-470. doi:10.1016/j.bcp.2009.09.002
[59] Ravichandran, L.V., Chen, H., Li, Y., Quon, M.J. (2001) Phosphorylation of PTP1B at Ser50 by Akt impairs its ability to dephosphorylate the insulin receptor. Molecular Endocrinology, 15, 1768-1780. doi:10.1210/me.15.10.1768
[60] Delcommenne, M., Tan, C., Gray, V., Rue, L., Woodgett, J., Dedhar, S. (1998) Phosphoinositide-3-OH kinase-dependent regulation of glycogen synthase kinase 3 and protein kinase B/AKT by the integrin-linked kinase. Proceedings of the National Academy of Sciences of the United State of Amereica, 95, 11211-11216. doi:10.1073/pnas.95.19.11211
[61] McGettrick, A.J., Feener, E.P., Kahn. C.R. (2005) Human insulin receptor substrate-1 (IRS-1) polymorphism G972R causes IRS-1 to associate with the insulin recaptor and inhibit receptor autophosphorylation. The Journal of Biological Chemistry, 280, 6441-6446. doi:10.1074/jbc.M412300200
[62] Marini, M.A., Frontoni, S., Mineo, D., Bracaglia, D., Cardellini, M., De Nicolais, P., Baroni, A., D’Alfonso, R., Perna, M., Lauro, D., Federici, M., Gambardella, S., Lauro, R. and Sesti, G. (2003) The Arg972 variant in insulin receptor substrate-1 is associated with an atherogenic profile in offspring of type 2 diabetic patients. The Journal of Clinical Endocrinology & Metabolism, 88, 33683371. doi:10.1210/jc.2002-021716
[63] Danial, N.N. and Korsmeyer, S.J. (2004) Cell death: Critical control points. Cell, 116, 205-219. doi:10.1016/S0092-8674(04)00046-7
[64] Zong, W.X., Lindsten, T., Ross, A.J., MacGregor, G.R. and Thompson, C.B. (2001) BH3-only proteins that bind pro-survival Bcl-2 family members fail to induce apoptosis in the absence of Bax and Bak. Genes Development, 15, 1481-1486. doi:10.1101/gad.897601
[65] Yang, J., Liu, C.Q. (2000) Molecular modeling on human CCR5 receptors and complex with CD4 antigens and HIV-1 envelope glycoprotein gp120. Acta Pharmacologica Sinica, 21, 29-34.
[66] Yang, J., Zhan, C.Y., Dong, X.C., Yang, K. and Wang, F.X. (2004) Interaction of human fibrinogen receptor (GPIIb-IIIa) with decorsin. Acta Pharmacologica Sinica, 25, 1096-1104.
[67] Chen, T., Yang, J., Wang, Y.L., Zhan, C.Y., Zang, Y.H. and Qin, J.C. (2005) Design of recombinant stem cell factor-macrophage colony stimulating factor fusion proteins and their biological activity in vitro. Journal of Computer-Aided Molecular Design, 19, 319-328.
[68] Strausberg, R.L., Feingold, E.A., Grouse, L.H., Derge, J.G., Klausner, R.D., Collins, F.S, Wagner, L., Shenmen, C,M., Schuler, G.D., Altschul, S.F., Zeeberg, B., Buetow, K.H., Schaefer, C.F., Bhat, N.K., Hopkins, R.F., Jordan, H., Moore,T., Max, S.I., Wang, J. and Marra, M.A. (2002) Generation and initial analysis of more than 15,000 fulllength human and mouse cDNA sequences. Proceedings of the National Academy of Sciences of the United State of Amereica, 99, 16899-16903. doi:10.1073/pnas.242603899
[69] Zheng, J., Knighton, D.R., Xuong, N.H., Taylor, S.S., Sowadski, J.M. and Ten Eyck, L.F. (1993) Crystal structures of the myristylated catalytic subunit of cAMP-dependent protein kinase reveal open and closed conformations. Protein Science, 2, 1559-1573. doi:10.1002/pro.5560021003
[70] Yang, J. (2010) Molecular modeling of human BAD, a pro-apoptotic Bcl-2 family member, integrating glycolysis and apoptosis. Protein & Peptide Letters, 17, 206-220. doi:10.2174/092986610790226003
[71] Terrak, M., Kerff, F., Langsetmo, K., Tao, T., Dominguez, R. (2004) Structural basis of protein phosphatase 1 regulation. Letters to Nature, 429, 780-784. doi:10.1038/nature02582
[72] Newlon, M.G., Roy, M., Morikis, D., Carr, D.W., Westphal, R., Scott, J.D. and Jennings, P.A. (2001) A novel mechanism of PKA anchoring revealed by solution structures of anchoring complexes. The EMBO Journal, 20, 1651-1662. doi:10.1093/emboj/20.7.1651
[73] Yang, J. (2010) Molecular modeling of human hepatocyte PKA (cAMP-dependent protein kinase type-II) and its structure analysis. Protein & Peptide Letters, 17, 646-659. doi:10.2174/092986610791112792
[74] Yang, J. and Jiang, X.F. (2010) A novel approach to predict protein-protein interactions related to alzheimer’s disease based on complex network. Protein & Peptide Letters, 17, 356-366. doi:10.2174/092986610790780323
[75] Li, X.C., Carretero, O.A., Shao, Y. and Zhuo, J.L. (2006) Glucagon receptor-mediated extracellular signal-regulated kinase 1/2 phosphorylation in rat mesangial cells: Role of protein kinase a and phospholipase C. Hypertension, 47, 580-585. doi:10.1161/01.HYP.0000197946.81754.0a
[76] Fu, W., Ruangkittisakul, A., Mactavish, D., Shi, J.Y., Ballanyi, K. and Jhamandas, J.H. (2012) Amyloid beta (Aβ) peptide directly activates Amylin-3 receptor subtype by triggering multiple intracellular signaling pathways. The Journal of Biological Chemistry, 287, 18820-18830. doi:10.1074/jbc.M111.331181
[77] Boller, S., Joblin, B.A., Xu, L., Item, F., Trüb, T., Boschetti, N., Spinas, G.A. and Niessen, M. (2012) From signal transduction to signal interpretation: An alternative model for the molecular function of insulin receptor substrates. Archives of Physiology Biochemistry, 118, 148155. doi:10.3109/13813455.2012.671333
[78] Lee, D.H., Huang, H., Choi, K., Mantzoros, C. and Kim, Y.B. (2012) Selective PPARγ modulator INT131 normalizes insulin signaling defects and improves bone mass in diet-induced obese mice. Endocrinology and Metabolism: American Journal of Physiology, 302, E552-E560. doi:10.1152/ajpendo.00569.2011
[79] Chen, J.X., Tuo, Q., Liao, D.F. and Zeng, H. (2012) Inhibition of protein tyrosine phosphatase improves angiogenesis via enhancing Ang-1/Tie-2 signaling in diabetes. Experimental Diabetes Research, 2012, 836759.
[80] Zhou, H.H., Chin, C.N., Wu, M., Ni, W., Quan, S., Liu, F., Dallas-Yang, Q., Ellsworth, K., Ho, T., Zhang, A., Natasha, T., Li, J., Chapman, K., Strohl, W., Li, C., Wang, I.M., Berger J, An, Z., Zhang, B.B. and Jiang, G. (2009) Suppression of PC-1/ENPP-1 expression improves insulin sensitivity in vitro and in vivo. European Journal of Pharmacology, 616, 346-352. doi:10.1016/j.ejphar.2009.06.057
[81] Karki, S., Chakrabarti, P., Huang, G., Wang, H., Farmer, S.R. and Kandror, K.V. (2011) The multi-level action of fatty acids on adiponectin production by fat cells. PLoS One, 6, e28146. doi:10.1371/journal.pone.0028146
[82] Morris, D.L., Cho, K.W. and Rui, L. (2010) Critical role of the src homology 2 (SH2) domain of neuronal SH2B1 in the regulation of body weight and glucose homeostasis in mice. Endocrinology, 151, 3643-3651. doi:10.1210/en.2010-0254
[83] Samuel, V.T. and Shulman, G.I. (2012) Mechanisms for insulin resistance: Common threads and missing links. Cell, 148, 852-871. doi:10.1016/j.cell.2012.02.017
[84] Tahrani, A.A., Bailey, C.J., Del Prato, S. and Barnett, A.H. (2011) Management of type 2 diabetes: New and future developments in treatment. Lancet, 378, 182-197. doi:10.1016/S0140-6736(11)60207-9
[85] Morris, J.K. and Burns, J.M. (2012) Insulin: An emerging treatment for alzheimer’s disease dementia? Current Neurology and Neuroscience Reports, 12, 520-527. doi:10.1007/s11910-012-0297-0
[86] Danial, N.N. (2009) BAD: Undertaker by night, candyman by day. Oncogene, 27, S53-S70. doi:10.1038/onc.2009.44
[87] Gramma, P., Tripathy, D., Sanchez, A., Yin, X. and Luo, J. (2011) Brain microvasculature and hypoxia-related proteins in alzheimer’s disease. International Journal of Clinical and Experimental Pathology, 4, 616-627.
[88] Mandrekar-Colucci, S. and Landreth, G.E. (2011) Nuclear receptors as therapeutic targets for alzheimer’s disease. Expert Opinion on Therapeutic Targets, 15, 10851097. doi:10.1517/14728222.2011.594043
[89] Nicolakakis, N. and Hamel, E. (2011) Neurovascular function in alzheimer’s disease patients and experimental models. Journal of Cerebral Blood Flow & Metabolism, 31, 1354-1370. doi:10.1038/jcbfm.2011.43
[90] Duarte, A.I., Moreira, P.I. and Oliveira, C.R. (2012) Insulin in central nervous system: More than just a peripheral hormone. Journal of Aging Research, 2012, 384017.
[91] Berglund, E.D., Kang, L., Lee-Young, R.S., Hasenour ,C.M., Lustig, D.G., Lynes, S.E., Donahue, E.P., Swift, L.L., Charron, M.J. and Wasserman, D.H. (2010) Glucagon and lipid interactions in the regulation of hepatic AMPK signaling and expression of PPARα and FGF21 transcripts in vivo. Endocrinology and Metabolism: American Journal of Physiology, 299, E607E614. doi:10.1152/ajpendo.00263.2010
[92] Zraika, S., Aston-Mourney, K., Marek, P., Hull, R.L., Green, P.S., Udayasankar, J., Subramanian, S.L., Raleigh, D.P. and Kahn, S.E. (2010) Neprilysin impedes islet amyloid formation by inhibition of fibril formation rather than peptide degradation. The Journal of Biological Chemistry, 285, 18177-18183. doi:10.1074/jbc.M109.082032
[93] Zraika, S., Hull, R.L., Udayasankar, J., Aston-Mourney, K., Subramanian, S.L., Kisilevsky, R., Szarek, W.A. and Kahn, S.E. (2009) Oxidative stress is induced by islet amyloid formation and timedependently mediates amyloid-induced beta cell apoptosis. Diabetologia, 52, 626635. doi:10.1007/s00125-008-1255-x
[94] Yao, M., Nguyen, T.V. and Pike, C.J. (2005) Beta-amyloid-induced neuronal apoptosis involves c-Jun N-terminal kinase-dependent downregulation of Bcl-w. The Journal of Neuroscience, 25, 1149-1158. doi:10.1523/JNEUROSCI.4736-04.2005
[95] Kitamura, Y., Shimohama, S., Kamoshima, W., Ota, T., Matsuoka, Y., Nomura, Y., Smith, M.A., Perry, G., Whitehouse, P.J. and Taniguchi, T. (1998) Alteration of proteins regulating apoptosis, Bcl-2, Bcl-x, Bax, Bak, Bad, ICH-1 and CPP32, in alzheimer’s disease. Brain Research, 780, 260-269. doi:10.1016/S0006-8993(97)01202-X
[96] Fang, X., Gao, G., Xue, H., Zhang, X. and Wang, H. (2012) Exposure of perfluorononanoic acid suppresses the hepatic insulin signal pathway and increases serum glucose in rats. Toxicology, 294, 109-115. doi:10.1016/j.tox.2012.02.008
[97] Yang, J., Li, J.H., Wang, J. and Zhang, C.Y. (2010) Molecular modeling of BAD complex resided in a mitochondrion integrating glycolysis and apoptosis. Journal of Theoretical Biology, 266, 231-241. doi:10.1016/j.jtbi.2010.06.009
[98] Fountoulakis, M., Cairns, N. and Lubec, G. (1999) Increased levels of 14-3-3 gamma and epsilon proteins in brain of patients with alzheimer’s disease and down syndrome. Journal of Neural Transmission. Supplementa, 57, 323-325.
[99] Chong, Z.Z. and Maiese, K. (2004) Targeting WNT, protein kinase B, and mitochondrial membrane integrity to foster cellular survival in the nervous system. Histology and Histopathology, 19, 495-504.
[100] Shang, Y.C., Chong, Z.Z., Wang, S. and Maiese, K. (2012) Prevention of β-amyloid degeneration of microglia by erythropoietin depends on Wnt1, the PI 3K/mTOR pathway, bad, and Bcl-xL. Aging (Albany NY), 4, 187-201.
[101] Scapoli, C., Bartolomei, E., De Lorenzi, S., Carrieri, A., Salvatorell, G., Rodriguez-Larralde, A., Barrai, I. (2009) Codon and aminoacid usage patterns in mycobacteria. Journal of Molecular Microbiology and Biotechnology, 17, 53-60. doi:10.1159/000195674
[102] Higgs, P.G. and Ran, W. (2008) Coevolution of codon usage and tRNA genes leads to alternative stable states of biased codon usage. Molecular Biology Evolution, 25, 2279-2291. doi:10.1093/molbev/msn173
[103] Zhang, Q., Zhao, S., Chen, H., Liu, X., Zhang, L. and Li, F. (2009) Analysis of the codon use frequency of AMPK family genes from different species. Molecular Biology Reports, 36, 513-519. doi:10.1007/s11033-007-9208-x
[104] Zhou, M., Tong, C.F. and Shi, J.S. (2007) A preliminary analysis of synonymous codon usage in poplar species. Zhi Wu Sheng Li Yu Fen Zi Sheng Wu Xue Xue Bao, 3, 285-293.
[105] Lobry, J.R. and Gautier, C. (1994) Hydrophobicity, expressiveity and aromaticity are the major trends of aminoacid usage in 999 Escherichia coli chromosome-encoded genes. Nucleic Acids Research, 22, 3174-3180. doi:10.1093/nar/22.15.3174
[106] D’Onofrio, G., Ghosh, T.C. and Bernardi, G. (2002) The base composition of the genes is correlated with the secondary structures of the encoded proteins. Gene, 300, 179-187. doi:10.1016/S0378-1119(02)01045-4
[107] Sueoka, N. (1992) Directional mutation pressure, selective constraints, and genetic equilibria. Journal of Molecular Evolution, 34, 95-114. doi:10.1007/BF00182387
[108] Fan, S. and Zhang, X. (2009) CpG island methylation pattern in different human tissues and its correlation with gene expression. Biochemical and Biophysical Research Communications, 383, 421-425.
[109] Gaffney, D.J. and Keightley, P.D. (2008) Effect of the assignment of ancestral CpG state on the estimation of nucleotide substitution rates in mammals. BMC Evolutionary Biology, 8, 265. doi:10.1186/1471-2148-8-265
[110] Zeeberg, B. (2012) Shannon information theoretic computation of synonymous codon usage biases in coding regions of human and mouse genomes. Genome Research, 12, 944-955. doi:10.1101/gr.213402
[111] Al-Hello, H., Ylipaasto, P., Smura, T., Rieder, E., Hovi, T. and Roivainen, M. (2009) Amino acids of coxsackie B5 virus are critical for infection of the murine insulinoma cell line,MIN-6. Journal of Medical Virology, 81, 296-304. doi:10.1002/jmv.21391
[112] Koike, K. and Moriya, K. (2005) Metabolic aspects of hepatitis C viral infection: Steatohepatitis resembling but distinct from NASH. Journal of Gastroenterology, 40, 329-336. doi:10.1007/s00535-005-1586-z
[113] Hindersson, M., Orn, A., Harris and R.A., Frisk, G. (2004) Strains of Coxsackie virus B4 differed in their ability to induce acute pancreatitis and the responses were negatively correlated to glucose tolerance. Archives of Virology, 149, 1985-2000.

comments powered by Disqus

Copyright © 2020 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.