Removal of Zn (II) from Aqueous Solution onto Kaolin by Batch Design

DOI: 10.4236/jwarp.2013.57067   PDF   HTML     3,771 Downloads   6,124 Views   Citations


The Algerian kaolin clay was investigated to remove Zn(II) heavy metal ion from aqueous solution. The effect of contact time, initial metal ion concentration, pH and temperature was experimentally studied in batch mode to evaluate the adsorption capacity, kinetic, thermodynamic and equilibrium. The extent of zinc adsorption increased with increasing initial concentration of adsorbat, pH and temperature. The linear Langmuir and Freundlich models were applied to describe equilibrium isotherms and both models fitted well. The monolayer adsorption capacity for Zn(II) ions was 12.23 mg per g of kaolin clay at pH 6.1 and 25°C. Dubinin-Radushkevich (D-R) isotherm model was also applied to the equilibrium data. Thermodynamic parameters showed that the adsorption of Zn(II) onto kaolin clay was spontaneous and endothermic process in nature. Furthermore, the Lagergren-first-order and pseudo-second-order models were used to describe the kinetic data. The experimental data fitted well the pseudo-second-order kinetic. As a result, the kaolin clay may be used for removal of zinc from aqueous media.

Share and Cite:

B. Meroufel, O. Benali, M. Benyahia, M. Zenasni, A. Merlin and B. George, "Removal of Zn (II) from Aqueous Solution onto Kaolin by Batch Design," Journal of Water Resource and Protection, Vol. 5 No. 7, 2013, pp. 669-680. doi: 10.4236/jwarp.2013.57067.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] L. P. Zhang, X. Ye, H. feng, Y. H. Jing, T. Ouyang, X. T. Yu, R. R. Liang, C. T. Gao and W. Q. Chen, “Heavy Metal Contamination in Western Xiamen Baysediments and Its Vicinity,” Marine Pollution Bulletin, Vol. 54, No. 7, 2007, pp. 974-982. doi:10.1016/j.marpolbul.2007.02.010
[2] Y. B. Sun, Q. X. Zhou, X. K. Xie and R. Liu, “Spatial Sources and Risk Assessment of Heavy Metal Contamination of Urban Soils in Typical Regions of Shenyang,” Journal of Hazardous Materials, Vol. 174, No. 1-3, 2010, pp. 455-462. doi:10.1016/j.jhazmat.2009.09.074
[3] R. L. Yu, X. Yuan, Y. H. Zhao and X. L. Tu, “Heavy Metal Pollution in Intertidal Sediments from Quanzhou Bay,” Journal of Environmental Sciences, Vol. 20, No. 6, 2008, pp. 664-669. doi:10.1016/S1001-0742(08)62110-5
[4] NRC (National Research Council), “Drinking Water and Public Health Safe Drinking Water Committee,” National Academy Press, Washington DC, 1977.
[5] World Health Organization, “Guidelines for Drinking Water Quality,” Vol. 1, WHO, 1993, p. 52.
[6] V. C. Srivastava, I. D. Mall and I. M. Mishra, “Characterization of Mesoporous Rice Husk Ash (RHA) and Adsorption Kinetics of Metal Ions from Aqueous Solution onto RHA,” Journal of Hazardous Materials, Vol. 134, No. 1-3, 2006, pp. 257-267. doi:10.1016/j.jhazmat.2005.11.052
[7] J. A. Grout and C. D. Levings, “Effects of Acid Mine Drainage from an Abandoned Copper Mine, Britannia Mines, Howe Sound, British Columbia, Canada, on Transplanted Blue Mussels (Mytilus edulis),” Marine Environmental Research, Vol. 51, No. 3, 2001, pp. 265-288. doi:10.1016/S0141-1136(00)00104-5
[8] C. Lin, Y. Wu, W. Lu, A. Chen and Y. Liu, “Water Chemistry and Ecotoxicity of an Acid Mine Drainage-Affected Stream in Subtropical China during a Major Flood Event,” Journal of Hazardous Materials, Vol. 142, No. 1-2, 2007, pp. 199-207. doi:10.1016/j.jhazmat.2006.08.006
[9] R. Y. Ning, “Arsenic Removed by Reverse Osmosis,” Desalination, Vol. 143, No. 3, 2002, pp. 237-241. doi:10.1016/S0011-9164(02)00262-X
[10] G. U. Von, “Oxidation Kinetics and Product Formation,” Water Research, Vol. 37, No. 7, 2003, pp. 1443-1467. doi:10.1016/S0043-1354(02)00457-8
[11] X. Chen, G. Chen and P. L. Yue, “Novel Electrode System for Electroflotation of Wastewater,” Environmental Science and Technology, Vol. 36, No. 4, 2002, pp. 778-783. doi:10.1021/es011003u
[12] Z. Hu, L. Lei, Y. Li and Y. Ni, “Chromium Adsorption on High-Performance Activated Carbons from Aqueous Solution,” Separation and Purification Technology, Vol. 31, No. 1, 2003, pp. 13-18. doi:10.1016/S1383-5866(02)00149-1
[13] Z. Reddad, C. Gerente, Y. Andres, J. F. Thibault and P. Le Cloirec, “Cadmium and Lead Adsorption by Natural Polysaccharide in MF Membrance Reactor: Experimental Analysis and Modeling,” Water Research, Vol. 37, No. 16, 2003, pp. 3983-3991. doi:10.1016/S0043-1354(03)00295-1
[14] W. Ciesielski, C. Y. Lii, M. T. Yen and P. Tomasik, “Internation of Starch with Salt of Metals from the Transition Groups,” Carbohydrate Polymers, Vol. 51, No. 1, 2003, pp. 47-56. doi:10.1016/S0144-8617(02)00108-X
[15] H. Hyung and J. H. Kim, “A Mechanistic Study on Boron Rejection by Sea Water Reverse Osmosis Membranes,” Journal of Membrane Science, Vol. 286, No. 1-2, 2006, pp. 269-278. doi:10.1016/j.memsci.2006.09.043
[16] G. A. Waychunas, C. C. Fuller and J. A. Davis, “Surface Complexation and Precipitate Geometry for Aqueous Zn(II) Sorption on Ferrihydrite I: X-Ray Absorption Extended Fine Structure Spectroscopy Analysis,” Geochimica et Cosmochimica Acta, Vol. 66, No. 7, 2002, pp. 1119-1137. doi:10.1016/S0016-7037(01)00853-5
[17] D. Pérez-Quintanillaa and I. Del Hierroa, “Mesoporous Silica Functionalized with 2-Mercaptopyridine: Synthesis, Characterization and Employment for Hg(II) Adsorption,” Microporous Mesoporous Materials, Vol. 89, No. 1-3, 2006, pp. 58-68. doi:10.1016/j.micromeso.2005.10.012
[18] R. De Pablo, M. L. Chávez and M. Abatal, “Adsorption of Heavy Metals in Acid to Alkaline Environments by Montmorillonite and Ca-Montmorillonite,” Chemical Engineering Journal, Vol. 171, No. 3, 2011, pp. 1276-1286. doi:10.1016/j.cej.2011.05.055
[19] M. A. Zenasni, S. Benfarhi, A. Merlin, S. Molina, B. George and B. Meroufel, “Adsorption of Cu(II) on Maghnite from Aqueous Solution: Effects of pH, Initial Concentration, Interaction Time and Temperature,” Natural Science, Vol. 10, No. 11, 2012, pp. 856-868. doi:10.4236/ns.2012.411114
[20] I. Ikhsan, B. B. Johson, J. D. Wells and M. J. Angove, “Adsorption of Aspartic Acid,” Journal of Colloid and Interface Science, Vol. 273, No. 1, 2004, pp. 1-5. doi:10.1016/j.jcis.2004.01.061
[21] A. Sari and O. Isildak, “Adsorption Properties of Stearic Acid onto Untreated Kaolinite,” Bulletin of The Chemical Society of Ethiopia, Vol. 20, 2006, pp. 1-9. doi:10.4314/bcse.v20i2.61410
[22] M. J. Angove, B. B. Johson and J. D. Wells, “Adsorption of Cadmium(II) on Kaolinite,” Colloids and Surfaces A: Physicochemical and Engineering Aspects, Vol. 126, No. 2-3, 1997, pp. 137-147. doi:10.1016/S0927-7757(96)03990-8
[23] K. O. Adebowale, I. E. Unuabonah and B. I. Olu-Owolabi, “The Effect of Some Operating Variables on the Adsorption of Lead and Cadmium Ions on Kaolinite Clay,” Journal of Hazardous Materials, Vol. 134, No. 1-3, 2006, pp. 130-139. doi:10.1016/j.jhazmat.2005.10.056
[24] K. G. Bhattacharyya and S. S. Gupta, “Kaolinite and Montmorillonite as Adsorbents for Fe(III), Co(II) and Ni(II) in Aqueous Medium,” Applied Clay Science, Vol. 41, No. 1-2, 2008, pp. 1-9. doi:10.1016/j.clay.2007.09.005
[25] K. G. Bhattacharyya and S. S. Gupta, “Kaolinite, Montmorillonite, and Their Modified Derivatives as Adsorbents for Removal of Cu(II) from Aqueous Solution,” Separation and Purification Technology, Vol. 50, No. 3, 2006, pp. 388-397. doi:10.1016/j.seppur.2005.12.014
[26] S. S. Gupta and K. G. Bhattacharyya, “Interaction of Metal Ions with Clays: I. A Case Study with Pb(II),” Applied Clay Science, Vol. 30, No. 3-4, 2005, pp. 199-208. doi:10.1016/j.clay.2005.03.008
[27] Y. Yukselen and A. Kaya, “Suitability of Methylene Blue Test for Surface Area, Cation Exchange Capacity and Swell Potential Determination of Clayey Soils,” Engineering Geology, Vol. 102, No. 1-2, 2008, pp. 38-45. doi:10.1016/j.enggeo.2008.07.002
[28] S. Wang, Z. Nan, Y. Li and Z. Zhao, “The Chemical Bonding of Copper Ions on Kaolin from Suzhou, China,” Desalination, Vol. 228, 2009, pp. 97-107.
[29] M. L. Granizo, M. T. B. Varela and S. Martinez-Ramirez, “Alkali Activation of Metakaolins: Parameters Affecting Mechanical, Structural and Microstructural Properties,” Journal of Materials Science, Vol. 42, No. 9, 2007, pp. 2934-2943. doi:10.1007/s10853-006-0565-y
[30] A. G. S. Cristóbal, R. Castelló, M. A. M. Luengo and C. Vizcayno, “Zeolites Prepared from Calcined and Mechanically Modified Kaolins: A Comparative Study,” Applied Clay Science, Vol. 49, No. 3, 2010, pp. 239-246. doi:10.1016/j.clay.2010.05.012
[31] E. Galan, P. Aparicio, A. Miras, K. Michailidis and A. Tsirambides, “Technical Properties of Compounded Kaolin Sample from Griva (Macedonia, Greece),” Applied Clay Science, Vol. 10, No. 6, 1996, pp. 477-490. doi:10.1016/0169-1317(95)00041-0
[32] M. Q. Jiang, X. Y. Jin, X. Q. Lu and Z. L. Chen, “Adsorption of Pb(II), Cd(II), Ni(II) and Cu(II) onto Natural Kaolinite Clay,” Desalination, Vol. 252, No. 1-3, 2010, pp. 33-39. doi:10.1016/j.desal.2009.11.005
[33] A. Sari, M. Tuzen, D. Citak and M. Soylak, “Equilibrium, Kinetic and Thermodynamic Studies of Adsorption of Pb(II) from Aqueous Solution onto Turkish Kaolinite Clay,” Journal of Hazardous Materials, Vol. 149, No. 2, 2007, pp. 283-291. doi:10.1016/j.jhazmat.2007.03.078
[34] I. Langmuir, “The Adsorption of Gases on Plane Surfaces of Glass, Mica and Platinum,” Journal of the American Chemical Society, Vol. 40, No. 9, 1918, pp. 1361-1403. doi:10.1021/ja02242a004
[35] M. O Zacar and I. A. S. Engil, “Equilibrium Data and Process Design for Adsorption of Disperse Dyes onto Alunite,” Environment Geology, Vol. 45, No. 6, 2004, pp. 762-768. doi:10.1007/s00254-003-0936-5
[36] H. Freundlich, “über die Adsorption in l?sungen,” Zeitschrift für Physikalische Chemie (Leipzig), Vol. 57, 1906, pp. 385-470.
[37] E. Eren, “Removal of Copper Ions by Modified Unye Clay, Turkey,” Journal of Hazardous Materials, Vol. 159, No. 2-3, 2008, pp. 235-244. doi:10.1016/j.jhazmat.2008.02.035
[38] A. Sari, M. Tuzen and M. Soylak, “Adsorption of Pb(II) and Cr(III) from Aqueous Solution on Celtek Clay,” Journal of Hazardous Materials, Vol. 144, No. 1-2, 2007, pp. 41-46. doi:10.1016/j.jhazmat.2006.09.080
[39] A. Sari, M. Tuzen, D. Citak and M. Soylak, “Adsorption Characteristics of Cu(II) and Pb(II) onto Expanded Perlite from Aqueous Solution,” Journal of Hazardous Materials, Vol. 148, No. 1-2, 2007, pp. 387-394. doi:10.1016/j.jhazmat.2007.02.052
[40] D. Xu, X. L. Tan, C. L. Chen and X. K. Wang, “Adsorption of Pb(II) from Aqueous Solution to MX-80 Bentonite: Effect of pH, Ionic Strength, Foreign Ions and Temperature,” Applied Clay Science, Vol. 41, No. 1-2, 2008, pp. 37-46. doi:10.1016/j.clay.2007.09.004
[41] A. Günay, E. Arslankaya and I. Tosun, “Lead Removal from Aqueous Solution by Natural and Pretreated Clinoptilolite: Adsorption Equilibrium and Kinetics,” Journal of Hazardous Materials, Vol. 146, No. 1-2, 2007, pp. 362-371. doi:10.1016/j.jhazmat.2006.12.034
[42] S. Veli and B. Alyüz, “Adsorption of Copper and Zinc from Aqueous Solutions by Using Natural Clay,” Journal of Hazardous Materials, Vol. 149, No. 1, 2007, pp. 226-233. doi:10.1016/j.jhazmat.2007.04.109
[43] P. Ding, K. L. Huang, G. Y. Li, Y. F. Liu and W. W. Zeng, “Kinetics of Adsorption of Zn(II) Ion on Chitosan Derivatives,” International Journal of Biological Macromolecules, Vol. 39, No. 4-5, 2006, pp. 222-227. doi:10.1016/j.ijbiomac.2006.03.029
[44] C. H. Weng and C. P. Huang, “Adsorption Characteristics of Zn(II) from Dilute Aqueous Solution by Fly Ash,” Colloids and Surfaces A: Physicochemical and Engineering Aspects, Vol. 247, No. 1-3, 2004, pp. 137-143. doi:10.1016/j.colsurfa.2004.08.050
[45] S. Lagergren, “Zur Theorie der Sogenannten Adsorption gel Osterstoffe Kungliga Svenska vetenskapsakademiens,” Handlingar, Vol. 24, 1898, pp. 1-39.
[46] Y. S. Ho, “Citation Review of Lagergren Kinetic Rate Equation on Adsorption Reactions,” Scientometrics, Vol. 59, No. 1, 2004, pp. 171-177. doi:10.1023/
[47] Y. S. Ho, “Selection of Optimum Sorption Isotherm,” Carbon, Vol. 42, No. 10, 2004, pp. 2115-2116. doi:10.1016/j.carbon.2004.03.019
[48] C. Quintelas, H. Figueiredo and T. Tavares, “The Effect of Clay Treatment on Remediation of Diethylketone Contaminated Wastewater: Uptake, Equilibrium and Kinetic Studies,” Journal of Hazardous Materials, Vol. 186, No. 2-3, 2011, pp. 1241-1248. doi:10.1016/j.jhazmat.2010.11.131
[49] S. C. Tsai, S. Ouyang and C. N. Hsu, “Sorption and Diffusion Behavior of Cs and Sr on Jih-Hsing Bentonite,” Applied Radiation and Isotopes, Vol. 54, No. 2, 2001, pp. 209-215. doi:10.1016/S0969-8043(00)00292-X
[50] Y. S. Ho, “Review of Second-Order Models for Adsorption Systems,” Journal of Hazardous Materials, Vol. 136, No. 3, 2006, pp. 681-689. doi:10.1016/j.jhazmat.2005.12.043
[51] D. Wen, Y. S. Ho and X. Tang, “Comparative Sorption Kinetic Studies of Ammonium onto Zeolite,” Journal of Hazardous Materials, Vol. 133, No. 1-3, 2006, pp. 252-256. doi:10.1016/j.jhazmat.2005.10.020
[52] Y. S. Ho and G. McKay, “Pseudo-Second Order Model for Sorption Processes,” Process Biochemistry, Vol. 34, No. 5, 1999, pp. 451-465. doi:10.1016/S0032-9592(98)00112-5
[53] B. Meroufel, O. Benali, M. Benyahia, Y. Benmoussa and M. A. Zenasni, “Adsorptive Removal of Anionic Dye from Aqueous Solutions by Algerian Kaolin: Characteristics, Isotherm, Kinetic and Thermodynamic Studies,” Journal of Materials and Environmental Science, Vol. 4, No. 3, 2013, pp. 482-491.
[54] M. A. Zenasni, S. Benfarhi, A. Merlin, S. Molina, B. George and B. Meroufel, “Adsorption of Nickel in Aqueous Solution onto Natural Maghnite,” Materials Sciences and Applications, Vol. 4, No. 2, 2013, pp. 153-161. doi:10.4236/msa.2013.42018
[55] A. Safa Ozcan, B. Erdem and A. Ozcan, “Adsorption of Acid Blue 193 from Aqueous Solutions onto Na-Bentonite and DTMA-Bentonite,” Journal of Colloid and Interface Science, Vol. 280, No. 1, 2004, pp. 44-54. doi:10.1016/j.jcis.2004.07.035
[56] N. Caliskan, A. Riza Kul, S. Alkan, E. G. Sogut and I. Alacabey, “Adsorption of Zinc(II) on Diatomite and Manganese-Oxide-Modified Diatomite: A Kinetic and Equilibrium Study,” Journal of Hazardous Materials, Vol. 193, No. 15, 2011, pp. 27-36. doi:10.1016/j.jhazmat.2011.06.058
[57] L. Guo, C. M. Sun, G. Y. Li, C. Liu and C. Ji, “Thermodynamics and Kinetics of Zn(II) Adsorption on Crosslinked Starch Phosphates,” Journal of Hazardous Materials, Vol. 161, No. 1, 2009, pp. 510-515. doi:10.1016/j.jhazmat.2008.04.003
[58] M. K. Jhaa, R. R. Upadhyay, J. C. Lee and V. Kumar, “Treatment of Rayon Waste Effluent for the Removal of Zn and Ca Using Indion BSR Resin,” Desalination, Vol. 228, No. 1-3, 2008, pp. 97-107. doi:10.1016/j.desal.2007.08.010
[59] Y. Zhang, Y. Li, L. Q. Yang, X. J. Ma, L. Y. Wang and Z. F. Ye, “Characterization and Adsorption Mechanism of Zn2+ Removal by PVA/EDTA Resin in Polluted Water,” Journal of Hazardous Materials, Vol. 178, No. 1-3, 2010, pp. 1046-1054. doi:10.1016/j.jhazmat.2010.02.046
[60] P. C. Mishra and R. K. Patel, “Removal of Lead and Zinc Ions from Water by Low Cost Adsorbents,” Journal of Hazardous Materials, Vol. 168, No. 1, 2009, pp. 319-325. doi:10.1016/j.jhazmat.2009.02.026
[61] P. R. Puranik and K. M. Paknikar, “Influence of Co-Cations on Biosorption of Lead and Zinc—A Comparative Evaluation in Binary and Multimetal Systems,” Bioresource Technology, Vol. 70, No. 3, 1999, pp. 269-276. doi:10.1016/S0960-8524(99)00037-1
[62] A. Ucer, A. Uyanik and S. F. Aygun, “Adsorption of Cu(II), Zn(II), Mn(II) and Fe(II) Ions by Tannic Acid Immobilized Activated Carbon,” Separation and Purification Technology, Vol. 47, No. 3, 2006, pp. 113-118. doi:10.1016/j.seppur.2005.06.012
[63] S. R. Shukla and R. S. Pai, “Adsorption of Cu(II), Ni(II) and Zn(II) on Dye Loaded Groundnut Shells and Sawdust,” Separation and Purification Technology, Vol. 43, No. 1, 2005, pp. 1-8. doi:10.1016/j.seppur.2004.09.003
[64] A. K. Meena, G. K. Mishra, P. K. Rai, C. Rajagopal and P. N. Nager, “Removal of Heavy Metal Ions from Aqueous Solutions Using Carbon Aerogel as an Adsorbents,” Journal of Hazardous Materials, Vol. 122, No. 1-2, 2005, pp. 161-170. doi:10.1016/j.jhazmat.2005.03.024
[65] E. Pehlivan, S. Cetin and B. H. Yanik, “Equilibrium Studies for the Sorption of Zinc and Copper from Aqueous Solutions Using Sugar Beat Pulp and Fly Ash,” Journal of Hazardous Materials, Vol. 135, No. 1-3, 2006, pp. 193-199. doi:10.1016/j.jhazmat.2005.11.049
[66] S. Karabulut, A. Karabaka, A. Deaizbi and Y. Yurcim, “Batch Removal of Copper(II) and Zinc(II) from Aqueous Solutions with Low Rank Turkish Coals,” Separation and Purification Technology, Vol. 18, No. 3, 2000, pp. 177-184. doi:10.1016/S1383-5866(99)00067-2
[67] M. I. Kandah, “Zinc and Cadmium Adsorption on Low-Grade Phosphate,” Separation and Purification Technology, Vol. 35, No. 1, 2004, pp. 61-70. doi:10.1016/S1383-5866(03)00131-X
[68] A. K. Bhattacharya, S. N. Mandal and S. K. Das, “Adsorption of Zn(II) from Aqueous Solution by Using Different Adsorbents,” Chemical Engineering Journal, Vol. 123, No. 1-2, 2006, pp. 43-51. doi:10.1016/j.cej.2006.06.012
[69] Y. Li, Q. Yue and B. Gao, “Adsorption Kinetics and Desorption of Cu(II) and Zn(II) from Aqueous Solution onto Humic Acid,” Journal of Hazardous Materials, Vol. 178, No. 1-3, 2010, pp. 455-461. doi:10.1016/j.jhazmat.2010.01.103
[70] C. Pérez-Novo, D. Fernández-Calvino and A. Bermúdez-Couso, “Phosphorus Effect on Zn Adsorption-Desorption Kinetics in Acid Soils,” Chemosphere, Vol. 83, No. 7, 2011, pp. 1028-1034. doi:10.1016/j.chemosphere.2011.01.064
[71] E. Katsou, S. Malamis, M. Tzanoudaki, K. Haralambous and M. Loizidou, “Regeneration of Natural Zeolite Polluted by Lead and Zinc in Wastewater Treatment Systems,” Journal of Hazardous Materials, Vol. 189, No. 3, 2011, pp. 773-786. doi:10.1016/j.jhazmat.2010.12.061
[72] L. Agouborde and R. Navia, “Heavy Metals Retention Capacity of a Non-Conventional Sorbent Developed from a Mixture of Industrial and Agricultural Wastes,” Journal of Hazardous Materials, Vol. 167, No. 1-3, 2009, pp. 536-544. doi:10.1016/j.jhazmat.2009.01.027

comments powered by Disqus

Copyright © 2020 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.