Potential of proteins and their expression level in marine phytoplankton (Prymnesium parvum) as biomarker of N, P and Fe conditions in aquatic systems


Nitrogen (N), phosphorus (P) and Iron (Fe) are important nutrients for phytoplankton, and they are the key limiting nutrients in many marine systems. In the present study, growth and protein expression of marine phytoplankton Prymnesium parvum under different nitrate, phosphate and iron conditions were investigated in order to evaluate whether proteins and their expression level could be used as biomarkers of N, P, and Fe conditions in aquatic systems. The growth of P. parvum increased with the increase of nitrate, phosphate and iron concentrations in the culture medium. Protein expression levels also differed significantly (p < 0.001) for different nitrate, phosphate and iron conditions in the culture medium. The expression level of an 83 kDa protein at 0 and 5 μM nitrate treatments differed significantly (p < 0.001) from those at 20, 30, 50 and 100 μM nitrate treatments, indicating the expression levels of this protein as a biomarker of N status in the culture medium. A 121 kDa protein was up-regulated at phosphate stress conditions ([P] ≤ 1.0 μM), while this protein was not expressed at phosphate replete conditions ([P] ≥ 5 μM). Therefore, the expression of 121 kDa protein in P. parvum is indicative of phosphate deplete condition in aquatic systems. The expression level of a 42 kDa was significantly higher (p < 0.01) at Fe-stress condition ([Fe] = 0.01 μM) than Fe-replete conditions ([Fe] ≥ 0.1 μM). In addition, a new protein of 103 kDa was only expressed under Fe-deplete condition ([Fe] = 0.01 μM). Therefore, the 42 and 103 kDa proteins can be used as a biomarker of Fe-limitation condition of aquatic systems. However, further studies (two dimensional gel electrophoresis and mass spectrometry) are needed to identify and characterize these proteins in P. parvum.

Share and Cite:

Hasegawa, H. , Rahman, M. , Kato, S. , Maki, T. and Rahman, M. (2013) Potential of proteins and their expression level in marine phytoplankton (Prymnesium parvum) as biomarker of N, P and Fe conditions in aquatic systems. Advances in Biological Chemistry, 3, 338-346. doi: 10.4236/abc.2013.33038.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] Menzel, D.W., Hulburt, E.M. and Tyther, J.H. (1963) The effects of enriching Sargasso sea water on the production and species composition of the phytoplankton. Deep Sea Research and Oceanographic Abstracts, 10, 209-219. doi:10.1016/0011-7471(63)90357-7
[2] Moore, J.K. and Doney, S.C. (2007) Iron availability limits the ocean nitrogen inventory stabilizing feedbacks between marine denitrification and nitrogen fixation. Global Biogeochemical Cycles, 21, GB2001. doi:10.1029/2006GB002762
[3] Timmermans, K.R., Van der Wagt, B., Veldhuis, M.J.W., Maatman, A. and De Baar, H.J.W. (2005) Physiological responses of three species of marine pico-phytoplankton to ammonium, phosphate, iron and light limitation. Journal of Sea Research, 53, 109-120. doi:10.1016/j.seares.2004.05.003
[4] Geider, R. and La Roche, J. (2002) Redfield revisited: Variability of C:N:P in marine microalgae and its biochemical basis. European Journal of Phycology, 37, 1-17. doi:10.1017/S0967026201003456
[5] Howarth, R.W. and Marino, R. (2006) Nitrogen as the limiting nutrient for eutrophication in coastal marine ecosystems: Evolving views over three decades. Limnology and Oceanography, 51, 364-376. doi:10.4319/lo.2006.51.1_part_2.0364
[6] Elser, J.J., Bracken, M.E.S., Cleland, E.E., Gruner, D.S., Harpole, W.S., Hillebrand, H., Ngai, J.T., Seabloom, E.W., Shurin, J.B. and Smith, J.E. (2007) Global analysis of nitrogen and phosphorus limitation of primary producers in freshwater, marine and terrestrial ecosystems. Ecology Letters, 10, 1135-1142. doi:10.1111/j.1461-0248.2007.01113.x
[7] Tyrrell, T. (1999) The relative influences of nitrogen and phosphorus on oceanic primary production. Nature, 400, 525-531. doi:10.1038/22941
[8] Van Mooy, B.A.S., Fredricks, H.F., Pedler, B.E., Dyhrman, S.T., Karl, D.M. and Koblízek M. (2009) Phytoplankton in the ocean use non-phosphorus lipids in response to phosphorus scarcity. Nature, 458, 69-72. doi:10.1038/nature07659
[9] Ammerman, J.W., Hood, R.R., Case, D.A. and Cotner, J.B. (2003) Phosphorus deficiency in the Atlantic: An emerging paradigm in oceanography. Eos, Transactions American Geophysical Union, 84, 165. doi:10.1029/2003EO180001
[10] Beardall, J., Berman, T., Heraud, P., Omo Kadiri, M., Light, B.R., Patterson, G., Roberts, S., Sulzberger, B., Sahan, E. and Uehlinger, U. (2001) A comparison of methods for detection of phosphate limitation in microalgae. Aquatic Sciences-Research across Boundaries, 63, 107121. doi:10.1007/PL00001342
[11] Moore, C.M., Mills, M.M., Langlois, R., Milne, A., Achterberg, E.P., La Roche, J. and Geider, R.J. (2008) Relative influence of nitrogen and phosphorous availability on phytoplankton physiology and productivity in the oligotrophic sub-tropical North Atlantic Ocean. Limnology and Oceanography, 53, 291. doi:10.4319/lo.2008.53.1.0291
[12] Van Mooy, B.A.S., Rocap, G., Fredricks, H.F., Evans, C.T. and Devol, A.H. (2006) Sulfolipids dramatically decrease phosphorus demand by picocyanobacteria in oligotrophic marine environments. Proceedings of the National Academy of Sciences, 103, 8607-8612. doi:10.1073/pnas.0600540103
[13] Geider, R.J. and Roche, J. (1994) The role of iron in phytoplankton photosynthesis, and the potential for ironlimitation of primary productivity in the sea. Photosynthesis Research, 39, 275-301. doi:10.1007/BF00014588
[14] Watson, A.J., Bakker, D.C.E., Ridgwell, A.J., Boyd, P.W. and Law, C.S. (2000) Effect of iron supply on Southern Ocean CO2 uptake and implications for glacial atmospheric CO2. Nature, 407, 730-733. doi:10.1038/35037561
[15] Shi, D., Xu, Y., Hopkinson, B.M. and Morel, F.M.M. (2010) Effect of ocean acidification on iron availability to marine phytoplankton. Science, 327, 676-679. doi:10.1126/science.1183517
[16] Blain, S., Quéguiner, B., Armand, L., Belviso, S., Bombled, B., Bopp, L., Bowie, A., Brunet, C., Brussaard, C. and Carlotti, F. (2007) Effect of natural iron fertilization on carbon sequestration in the Southern Ocean. Nature, 446, 1070-1074. doi:10.1038/nature05700
[17] Moore, C.M., Hickman, A.E., Poulton, A.J., Seeyave, S. and Lucas, M.I. (2007) Iron-light interactions during the CROZet natural iron bloom and EXport experiment (CROZEX): II-Taxonomic responses and elemental stoichiometry. Deep Sea Research Part II: Topical Studies in Oceanography, 54, 2066-2084. doi:10.1016/j.dsr2.2007.06.015
[18] Bartell, S.M. (2006) Biomarkers, bioindicators, and ecological risk assessment—A brief review and evaluation. Environmental Bioindicators, 1, 60-73. doi:10.1080/15555270591004920
[19] Gawel, J.E., Trick, C.G. and Morel, F.M.M. (2001) Phytochelatins are bioindicators of atmospheric metal exposure via direct foliar uptake in trees near Sudbury, Ontario, Canada. Environmental Science & Technology, 35, 2108-2113. doi:10.1021/es0016250
[20] Kawakami, S.K., Gledhill, M. and Achterberg, E.P. (2006) Production of phytochelatins and glutathione by marine phytoplankton in response to metal stress. Journal of Phycology, 42, 975-989. doi:10.1111/j.1529-8817.2006.00265.x
[21] Morelli, E. and Pratesi, E. (1997) Production of phytochelatins in the marine diatom phaeodactylum tricornutum in response to copper and cadmium exposure. Bulletin of Environmental Contamination and Toxicology, 59, 657-664. doi:10.1007/s001289900530
[22] Kaur, A., Chaudhary, A., Kaur, A., Choudhary, R. and Kaushik, R. (2005) Phospholipid fatty acid—A bioindicator of environment monitoring and assessment in soil ecosystem. Current Science, 89, 1103-1112.
[23] Haasch, M.L., Quardokus, E.M., Sutherland, L.A., Goodrich, M.S., Prince, R., Cooper, K.R. and Lech, J.J. (1992) CYP1A1 protein and mRNA in teleosts as an environmental bioindicator: Laboratory and environmental studies. Marine Environmental Research, 34, 139-145. doi:10.1016/0141-1136(92)90098-7
[24] Sánchez, E., Soto, J.M., García, P.C., López-Lefebre, L.R., Rivero, R.M., Ruiz, J.M. and Romero, L. (2000) Phenolic and oxidative metabolism as bioindicators of nitrogen deficiency in French bean plants (Phaseolus vulgaris L. cv. Strike). Plant Biology, 2, 272-277. doi:10.1055/s-2000-3699
[25] Karsten, A.H. and Rice, C.D. (2004) c-Reactive protein levels as a biomarker of inflammation and stress in the Atlantic sharpnose shark (Rhizoprionodon terraenovae) from three southeastern USA estuaries. Marine Environmental Research, 58, 747-751. doi:10.1016/j.marenvres.2004.03.089
[26] Lewis, S., Donkin, M.E. and Depledge, M.H. (2001) Hsp70 expression in Enteromorpha intestinalis (Chlorophyta) exposed to environmental stressors. Aquatic Toxicology, 51, 277-291. doi:10.1016/S0166-445X(00)00119-3
[27] Shpigel, M., Ragg, N.L., Lupatsch, I. and Neori, A. (1999) Protein content determines the nutritional value of the seaweed Ulva lactuca L. for the abalone Haliotis tuberculata L. and H. discus hannai Ino. Journal of Shellfish Research, 18, 227-234.
[28] Guillard, R.R.L. and Ryther, J.H. (1962) Studies of marine planktonic diatoms: I. Cyclotella nana hustedt, and detonula confervacea (cleve) gran. Canadian Journal of Microbiology, 8, 229-239. doi:10.1139/m62-029
[29] Lyman J. and Fleming R.H. (1940) Composition of sea water. Journal of marine Research, 3, 134-146.
[30] Maki, T., Suzuki, T., Kido, K., Nakahara, A., Higashi, T., Hasegawa, H., Ueda, K. and Saijoh, K. (2008) Effect of iron stress on gene expression in harmful microalga Prymnesium parvum. Journal of Ecotechnology Research, 14, 13-16.
[31] Gromova, I. and Celis, J.E. (2006) Protein detection in gels by silver staining: A procedure compatible with massspectrometry. Cell Biology: A Laboratory Handbook, 4, 421-429.
[32] Colijn, F. and Cadée, G.C. (2003) Is phytoplankton growth in the Wadden Sea light or nitrogen limited? Journal of Sea Research, 49, 83-93. doi:10.1016/S1385-1101(03)00002-9
[33] Elser, J.J., Marzolf, E.R. and Goldman, C.R. (1990) Phosphorus and nitrogen limitation of phytoplankton growth in the freshwaters of North America: A review and critique of experimental enrichments. Canadian Journal of Fisheries and Aquatic Sciences, 47, 1468-1477. doi:10.1139/f90-165
[34] Palenik, B. and Koke, J.A. (1995) Characterization of a nitrogen-regulated protein identified by cell surface biotinylation of a marine phytoplankton. Applied and Environmental Microbiology, 61, 3311-3315.
[35] Webb, E.A., Moffett, J.W. and Waterbury, J.B. (2001) Iron stress in open-ocean cyanobacteria (Synechococcus, Trichodesmium, and Crocosphaera spp.): Identification of the IdiA Protein. Applied and Environmental Microbiology, 67, 5444-5452. doi:10.1128/AEM.67.12.5444-5452.2001
[36] Reddy, K.J., Bullerjahn, G.S., Sherman, D.M. and Sherman, L.A. (1988) Cloning, nucleotide sequence, and mutagenesis of a gene (irpA) involved in iron-deficient growth of the cyanobacterium Synechococcus sp. strain PCC7942. Journal of Bacteriology, 170, 4466-4476.
[37] Reddy, K.J., Masamoto, K., Sherman, D.M. and Sherman, L.A. (1989) DNA sequence and regulation of the gene (cbpA) encoding the 42-kilodalton cytoplasmic membrane carotenoprotein of the cyanobacterium Synechococcus sp. strain PCC 7942. Journal of Bacteriology, 171, 3486-3493.
[38] Prinz, T. and Tommassen, J. (2000) Association of ironregulated outer membrane proteins of Neisseria meningitidis with the RmpM (class 4) protein. FEMS Microbiology Letters, 183, 49-53. doi:10.1111/j.1574-6968.2000.tb08932.x
[39] Ricketts, H.J., Morgan, A.J., Spurgeon, D.J. and Kille, P. (2004) Measurement of annetocin gene expression: A new reproductive biomarker in earthworm ecotoxicology. Ecotoxicology and Environmental Safety, 57, 4-10. doi:10.1016/j.ecoenv.2003.08.008
[40] Shepard, J.L. and Bradley, B.P. (2000) Protein expression signatures and lysosomal stability in Mytilus edulis exposed to graded copper concentrations. Marine Environmental Research, 50, 457-463. doi:10.1016/S0141-1136(00)00119-7
[41] Shepard, J.L., Olsson, B., Tedengren, M. and Bradley, B.P. (2000) Protein expression signatures identified in Mytilus edulis exposed to PCBs, copper and salinity stress. Marine Environmental Research, 50, 337-340. doi:10.1016/S0141-1136(00)00065-9

Copyright © 2022 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.