Effects of an Anatoxin-a(s)-Producing Strain of Anabaena spiroides (Cyanobacteria) on the Survivorship and Somatic Growth of Two Daphnia similis Clones

DOI: 10.4236/jep.2013.46A002   PDF   HTML     3,867 Downloads   5,705 Views   Citations


The toxicity of an anatoxin-a(s) producer strain of Anabaena spiroides (ITEP-024) was estimated through sub-chronic bioassays with two clones of Daphnia similis (Labtox and Itajubá), both with intact cells and aqueous extracts of lyophilized material. Animals were grown as clonal cultures in the lab with mineral water plus 20% lake water. The concentrations used in the bioassays were 0.125, 0.25, 0.375, 0.50 and 1.00 mg·L-1 for intact cell cultures and 10, 25, 50 and 100 mg·L-1 for aqueous extracts. Controls with nutritive food were used. The bioassays lasted 72 hours for the aqueous extracts and 96 hours for the intact cell cultures, with measurements of survivorship every day and body length at the beginning and at the end of the bioassays. Both kinds of samples affected survivorship and growth rate of both Daphnia clones, with the intact cell samples being more effective than aqueous extracts. Regarding survivorship, the clone Itajubá was more sensitive to aqueous extracts than the clone Labtox (LC50 = 54.4 and 83.1 mg·L-1, respectively). No significant difference was found between clones in the intact cell bioassays. Regarding growth rates, a significant difference was found between clones in both samples. However, growth rate was significantly decreased in much lower concentrations of intact cells than in aqueous extracts of cyanobacteria. A stimulus of growth was found in the lower concentration (10 mg·L-1) of aqueous extracts, which is consistent with a hormetic response. In spite of its known high neurotoxicity to mice, ITEP-024 strain caused any effect on mobility of both clones. The effects on survivorship and growth of Daphnia caused by ITEP-024 strain in much higher concentrations of aqueous extracts suggests that uptake of toxins from the water are not so effective as the uptake trough the gut when intact cells are ingested.

Share and Cite:

F. Abreu and A. Ferrão-Filho, "Effects of an Anatoxin-a(s)-Producing Strain of Anabaena spiroides (Cyanobacteria) on the Survivorship and Somatic Growth of Two Daphnia similis Clones," Journal of Environmental Protection, Vol. 4 No. 6A, 2013, pp. 12-18. doi: 10.4236/jep.2013.46A002.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] G. A. Codd, S. G. Bell, K. Kaya, C. J. Ward, K. A., Beattie et al., “Cyanobacterial Toxins, Exposure Routes and Human Health,” European Journal of Phycology, Vol. 34, 1999, pp. 405-415. doi:10.1080/09670269910001736462
[2] A. S. Ferrao-Filho and B. Kozlowsky-Suzuki, “Cyanotoxins: Bioaccumulation and Effects on Aquatic Animals,” Marine Drugs, Vol. 9, No. 12, 2011, pp. 2729-2772. doi:10.3390/md9122729
[3] I. Stewart, A. A. Seawright and G. R. Shaw, “Cyanobacterial Poisoning in Livestock, Wild Mammals and Birds—An Overview,” In: H. K. Hudnell, Ed., Cyanobacterial Harmful Algal Blooms: State of the Science and Research Needs, Advances in Experimental Medicine and Biology, Springer, New York, Vol. 619, 2008, pp. 613-637. doi:10.1007/978-0-387-75865-7_28
[4] H. I. Baumann and F. Jüttner, “Inter-Annual Stability of Oligopeptide Patterns of Planktothrix rubescens Blooms and Mass Mortality of Daphnia in Lake Hallwilersee,” Limnologica, Vol. 38, No. 3-4, 2008, pp. 350-359. doi:10.1016/j.limno.2008.05.010
[5] B. W. Ibelings and K. E. Havens, “Cyanobacterial Toxins: A Qualitative Meta-Analysis of Concentrations, Dosage and Effects in Freshwater, Estuarine and Marine Biota,” In: H. K. Hudnell, Ed., Cyanobacterial Harmful Algal Blooms: State of the Science and Research Needs, Advances in Experimental Medicine and Biology, Springer, New York, Vol. 619, 2008, pp. 675-732. doi:10.1007/978-0-387-75865-7_32
[6] J. H. Landsberg, “Anatoxins,” In: R. R. Stickney, Ed., The Effects of Harmful Algal Blooms on Aquatic Organisms. Reviews in Fisheries Sciences, Vol. 10, No. 2, 2002, pp. 241-243. doi:10.1080/20026491051695
[7] R. J. R. Molica, E. J. A. Oliveira, P. V. V. C. Carvalho, A. N. S. F. Costa, M. C. C. Cunha, J. L. Melo and S. M. F. O. Azevedo, “Occurrence of Saxitoxins and an AnatoinA(S)-Like Anticholinesterase in a Brazilian Drinking Water Supply,” Harmful Algae, Vol. 4, No. 4, 2005, pp. 743-753. doi:10.1016/j.hal.2004.11.001
[8] I. Chorus and J. Bartram, “Toxic Cyanobacteria in Water: A Guide to Their Public Health Consequences, Monitoring and Management,” E and FN Spon, London, on behalf of the World Health Organization, Geneva, 1999.
[9] K. Sivonen, “Freshwater Cyanobacterial Neurotoxins: Ecobiology, Chemistry and Detection,” In: L. M. Botana, Ed., Seafood and Freshwater Toxins, Marcel Dekker, Inc., New York, 2000, pp. 567-582. doi:10.1201/9780203909539.ch26
[10] E. Devic, D. Li, A. Dauta, P. Henriksen, G. A. Codd, J.-L. Marty and D. Fournier, “Detection of Anatoxin-a(s) in Environmental Samples of Cyanobacteria by Using a Biosensor with Engineered Acetylcholinesterases,” Applied and Environmental Microbiology, Vol. 68, No. 8, 2002, pp. 4102-4106. doi:10.1128/AEM.68.8.4102-4106.2002
[11] W. R. DeMott, Q. Zhang and W. W. Carmichael, “Effects of Toxic Cyanobacteria and Purified Toxins on the Survival and Feeding of a Copepod and Three Species of Daphnia,” Limnology and Oceanography, Vol. 36, No. 7, 1991, pp. 1346-1357. http://www.aslo.org/lo/toc/vol_36/issue_7/1346.pdf
[12] S. M. Costa, “Efeitos de Saxitoxinas Produzidas por Cylindrospermopsis raciborskii e de Outras Cianotoxinas Sobre Cladóceros (Branchiopoda),” Ph.D. Thesis. Programa de Pós-graduacao em Ciências Biológicas, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, 2005, 96 p.
[13] S. J. Adamowicz, P. D. N. Hebert and M. C. Marinone, “Species Diversity and Endemism in the Daphnia of Argentina: A Genetic Investigation,” Zoological Journal of the Linnean Society, Vol. 140, No. 2, 2004, pp. 171-205. doi:10.1111/j.1096-3642.2003.00089.x
[14] A. Petrusek, “The populations of the Daphnia similis Species Complex in Germany after 110 Years—A New Case of Species Introduction?” Senckenbergiana biologica, Vol. 82, No. 1/2, 2003, pp. 11-14.
[15] M. Hamilton, R. C. Russo and R. V. Thurston, “Trimmed Spearman-Karber Method for Estimating Mediam Lethal Concentration in Toxicity Bioassays,” Environmental Science and Technology, Vol. 11, No. 7, 1977, pp. 714-719. doi:10.1021/es60130a004
[16] J. Hietala, M. Reinikainen and M. Walls, “Variation in Life History Responses of Daphnia to Toxic Microcystis aeruginosa,” Journal of Plankton Research, Vol. 17, No. 12, 1995, pp. 2307-2318. doi:10.1093/plankt/17.12.2307
[17] J. Hietala, C. Laurén-Maatta and M. Walls, “Life History Responses of Daphnia Clones to Toxic Microcystis at Different Food Levels,” Journal of Plankton Research, Vol. 19, 1997, pp. 917-926. doi:10.1093/plankt/19.7.917
[18] C. Laurén-Maatta, J. Hietala and M. Walls, “Responses of Daphnia pulex Populations to Toxic Cyanobacteria,” Freshwater Biology, Vol. 37, No. 3, 1997, pp. 635-647. doi:10.1046/j.1365-2427.1997.00189.x
[19] A. S. Ferrao-Filho, S. M. F. O. Azevedo and W. R. De-Mott, “Effects of Toxic and Non-Toxic Cyanobacteria on the Life History of Tropical and Temperate Cladocerans,” Freshwater Biology, Vol. 45, No. 1, 2000, pp. 1-19. doi:10.1046/j.1365-2427.2000.00613.x
[20] J. J. Gilbert, “Succeptibility of Planktonic Rotifers to a Toxic Strain of Anabaena floes-aquae,” Limnology and Oceanography, Vol. 39, No. 6, 1994, pp. 1286-1297. doi:10.4319/lo.1994.39.6.1286
[21] T. Rohrlack, K. Christoffersen, E. Dittmann, I. Nogueira, V. Vasconcelos and T. Borner, “Ingestion of Microcystins by Daphnia: Intestinal Uptake and Toxic Effects,” Limnology and Oceanography, Vol. 50, 2005, pp. 440-448. doi:10.4319/lo.2005.50.2.0440
[22] F. G. Tencalla, D. R. Dietrich and C. Schlatter, “Toxicity of Microcystis aeruginosa Peptide Toxin to Yearling Rain-Bow Trout (Oncorhyncus myskiss),” Aquatic Toxicology, Vol. 30, No. 3, 1994, pp. 215-224. doi:10.1016/0166-445X(94)90059-0
[23] W. J. Fisher and D. R. Dietrich, “Toxicity of the Cyanobacterial Cyclic Heptapepitide Toxins Microcystin-LR and -RR in Early Stages of the African Clawed Frog (Xenopus laevis),” Aquatic Toxicology, Vol. 49, No. 3, 2000, pp. 189-198. doi:10.1016/S0166-445X(99)00079-X
[24] T. Osswald, A. P. Carvalho, J. Claro and V. Vasconcelos, “Effects of Cyanobacterial Extracts Containing Anatoxin-A and of Pure Anatoxin-A on Early Developmental Stages of Carp,” Ecotoxicology and Environmental Safety, Vol. 72, 2008, pp. 473-478. doi:10.1016/j.ecoenv.2008.05.011
[25] A. S. Ferrao-Filho, S. M. Costa, M. G. L. Ribeiro and S. M. F. O. Azevedo, “Effects of a Saxitoxin-Producer Strain of Cylindrospermopsis raciborskii (Cyanobacteria) on the Swimming Movements of Cladocerans,” Environmental Toxicology, Vol. 23, No. 2, 2008, pp. 161-168. doi:10.1002/tox.20320
[26] A. S. Ferrao-Filho, M. C. S. Soares, V. F. Magalhaes and S. M. F. O. Azevedo, “A Rapid Bioassay for Detecting Saxitoxins Using a Daphnia Acute Toxicity Test,” Environmental Pollution, Vol. 158, No. 6, 2010, pp. 2084-2093. doi:10.1016/j.envpol.2010.03.007
[27] E. J. Calabrese, “Paradigm Lost, Paradigm Found: The Re-emergence of Hormesis as a Fundamental Dose Response Model in the Toxicological Sciences,” Environmental Pollution, Vol. 138, No. 3, 2005, pp. 378-411. doi:10.1016/j.envpol.2004.10.001
[28] W. R. DeMott and D. C. Müller-Navarra, “The Importance of Highly Unsaturated Fatty Acids in Zooplancton Nutrition: Evidence from Experiments with Daphnia, a Cyanobacterium and Lipid Emulsions,” Freshwater Biology, Vol. 38, No. 3, 1997, pp. 649-664. doi:10.1046/j.1365-2427.1997.00222.x
[29] I. C. G. Nogueira, P. Pereira, E. Dias, S. Pflugmacher, C. Wiegand, S. Franca, et al., “Accumulation of Paralytic Shellfish Toxins (PST) from the Cyanobacterium Aphanizomenon issatschenkoi by Cladoceran Daphnia magna,” Toxicon, Vol. 44, No. 7, 2004, pp. 773-780. doi:10.1016/j.toxicon.2004.08.006
[30] M. C. S. Soares, M. Lürling, R. Panosso and V. Huszar, “Effects of the Cyanobacterium Cylindrospermopsis raciborskii on Feeding and Life-History Characteristics of the Grazer Daphnia magna,” Ecotoxicology and Envirnmental Safety, Vol. 72, No. 4, 2009, pp. 1183-1189. doi:10.1016/j.ecoenv.2008.09.004
[31] S. M. Costa, A. S. Ferrao-Filho and S. M. F. O. Azevedo, “Effects of Saxitoxin- and Non-Saxitoxin-Producing Strains of the Cyanobacterium Cylindrospermopsis raciborskii on the Fitness of Temperate and Tropical Cladoderans,” Harmful Algae, in press.

comments powered by Disqus

Copyright © 2020 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.