Infrasonic Waves in Antarctica: A New Proxy for Monitoring Polar Environment

DOI: 10.4236/ijg.2013.44074   PDF   HTML   XML   4,623 Downloads   6,305 Views   Citations


Characteristic infrasound waves are clearly recorded at Syowa Station (SYO), East Antarctica, involving physical interaction in surrounding environments at the continent and SouthernOcean. A Chaparral microphone type infrasound sensor is deployed at SYO during the International Polar Year (IPY2007-2008), the most diverse international science program held recently. Continuous recorded data in 2008-2010 indicate a contamination of background oceanic signals (microbaroms). The characteristic signals are identified as the “microbaroms” with peaks between 4 and 10 s in the records. The peak amplitudes of microbaroms may be enhanced by the extratropical cyclonic storms and wind noises in Southern Ocean. The microbaroms has relatively lower amplitudes during austral winters, which may be caused by the larger amount of the sea-ice extent around theLützow-HolmBaynear SYO, with decreasing the ocean wave loading effects. In addition, the large energy with intrinsic periods between 12 and 30 s are observable under excellent storm conditions, particularly in local winter. The oceanic effects appearing on infrasound data are modulated by the presence of sea-ice and explained by a relationship between the atmosphere-ocean-cryosphere systems. Microbaroms measurements could be a useful tool for characterizing ocean wave climate, as well as a new proxy for monitoring a regional environmental variation inAntarctica.

Share and Cite:

M. Yamamoto, Y. Ishihara and M. Kanao, "Infrasonic Waves in Antarctica: A New Proxy for Monitoring Polar Environment," International Journal of Geosciences, Vol. 4 No. 4, 2013, pp. 797-802. doi: 10.4236/ijg.2013.44074.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] M. Tahira, “A Study of the Infrasonic Wave in the Atmosphere-Multi-Pipe Line Microphone for Infrasonic Observation,” The Journal of the Meteorological Society of Japan, Vol. 59, 1980, p. 4.
[2] M. Hedlin, M. Garces, H. Bass, C. Hayward, G. Herrin, J. V. Olson and C. Wilson, “Listening to the Secret Sounds of Earth’s Atmosphere,” Eos Transactions of the American Geophysical Union, Vol. 83, No. 48, 2002, pp. 564-565.
[3] R. S. Matoza, M. Hedlin and M. A. Garces, “An Infrasound Array Study of Mount St. Helens,” Journal of Volcanology and Geothermal Research, Vol. 160, No. 3-4, 2007, pp. 249-262. doi:10.1016/j.jvolgeores.2006.10.006
[4] M. Garces, D. Fee, A. Steffke, D. McCormack, H. Bass, C. Hetzer, M. Hedlin and R. Matoza, “Capturing the Acoustic Fingerprint of Stratospheric Ash Injection,” Eos Transactions of the American Geophysical Union, Vol. 89, No. 40, 2008, pp. 377-378. doi:10.1029/2008EO400001
[5] S. J. Arrowsmith, M. Hedlin, L. Ceranna and W. Edwards, “An Analysis of Infrasound Signals from the June 3rd, 2004 Fireball Over Washington State,” InfraMatics, Vol. 10, 2005, pp. 14-21.
[6] A. Le Pichon, E. Blanc and D. Drob, “Probing High-Altitude Winds Using Infrasound,” Journal of Geophysical Research, Vol. 110, No. D13, 2005, Article ID: D20104. doi:10.1029/2005JD006020
[7] C. R. Wilson, “Infrasound from Auroral Electrojet Motions at I53US,” InfraMatics, Vol. 10, 2005, pp. 1-13.
[8] T. Iyemori, M. Nose, D. S. Han, Y. Gao, M. Hashizume, N. Choosakul, H. Shinagawa, Y. Tanaka, M. Utsugi, A. Saito, H. McCreadie, Y. Odagi and F. Yang, “Geomagnetic Pulsations Caused by the Sumatra Earthquake on December 26, 2004,” Geophysical Research Letters, Vol. 32, 2005, Article ID: L20807. doi:10.1029/2005GL024083
[9] N. Arai, M. Iwakuni, S. Watada, Y. Imanishi, T. Murayama and M. Nogami, “Atmospheric Boundary Waves Excited by the Tsunami Generation Related to the 2011 Great Tohoku-Oki Earthquake,” Geophysical Research Letters, Vol. 38, 2011, Article ID: L00G18. doi:10.1029/2011GL049146
[10] Y. Ishihara, M. Furumoto, S. Sakai and S. Tsukuda, “The 2003 Kanto Large Bolide’s Trajectory Determined from Shockwaves Recorded by a Seismic Network and Images Taken by a Video Camera,” Geophysical Research Letters, Vol. 31, 2004, Article ID: L14702. doi:10.1029/2004GL020287
[11] M.-Y. Yamamoto, Y. Ishihara, Y. Hiramatsu, K. Kitamura, M. Ueda, Y. Shiba, M. Furumoto and K. Fujita, “Detection of Acoustic/Infrasonic/Seismic Waves Generated by Hypersonic Reentry of HAYABUSA Capsule and Fragmented Parts of Spacecraft,” Publications of the Astronomical Society of Japan, Vol. 63, No. 5, 2011, pp. 971-978.
[12] Y. Ishihara, Y. Hiramatsu, M.-Y. Yamamoto, M. Furumoto and K. Fujita, “Infrasound/Seismic Observation of the Hayabusa Reentry: Observations and Preliminary Results,” Earth Planets Space, Vol. 64, No. 7, 2012, pp. 655-660. doi:10.5047/eps.2012.01.003
[13] C. Rapley, R. Bell, I. Allison, P. Bindschadler, G. Casassa, S. Chown, G. Duhaime, V. Kotlyakov, M. Kuhn, O. Orheim, P. C. Pandey, H. Petersen, H. Schalke, W. Janoschek, E. Sarukhanian and Z. Zhang, “A Framework for the International Polar Year 2007-2008,” ICSU IPY 2007-2008 Planning Group, ICSU, Paris, 2004, p. 57.
[14] N. Sato, H. Ito, M. Kanao, H. Kanda, T. Naganuma, T. Ohata, K. Watanabe and T. Yamanouchi, “Engaging Asian Nations in IPY: Asian Forum for Polar Sciences (AFoPS) (Japanese Section),” In: I. Krupnik, et al., Eds., Understanding Earth’s Polar Challenges: International Polar Year 2007-2008 Summary by the IPY Joint Committee-5.3, Art Design Printing Inc., Edmonton, 2011, pp. 555-574.
[15] Y. Ishihara, M.-Y. Yamamoto and M. Kanao, “Current Status of Infrasound Pilot Observation at Japanese Islands and SYOWA Antarctica, and Development of New Infrasound Sensor Using Optical Sensing Method,” AGU Fall 2009 Meeting, San Francisco, 14-18 December 2009, Article ID: A13D-0244.
[16] R. Aster, D. McNamara and P. Bromirski, “Multidecadal Climate-Induced Variability in Microseisms,” Seismological Research Letters, Vol. 79, No. 2, 2008, pp. 194-202. doi:10.1785/gssrl.79.2.194
[17] R. Waxler and K. E. Gilbert, “The Radiation of Atmospheric Microbaroms by Ocean Waves,” Journal of the Acoustical Society of America, Vol. 119, No. 5, 2006, pp. 2651-2664. doi:10.1121/1.2191607
[18] M. Grob, A. Maggi and E. Stutzmann,“Observations of the Seasonality of the Antarctic Microseismic Signal, and Its Association to Sea Ice Variability,” Geophysical Research Letters, Vol. 38, 2011, Article ID: L11302. doi:10.1029/2011GL047525
[19] E. Stutzmann, M. Schimmel, G. Patau and A. Maggi, “Global Climate Imprint on Seismic Noise,” Geochemistry, Geophysics, Geosystems, Vol. 10, 2009, Article ID: Q11004. doi:10.1029/2009GC002619
[20] M. Kanao, A. Maggi, Y. Ishihara, M.-Y. Yamamoto, K. Nawa, A. Yamada, T. Wilson, T. Himeno, G. Toyokuni, S. Tsuboi, Y. Tono and K. Anderson, “Interaction on Seismic Waves between Atmosphere-Ocean-Cryosphere and Geosphere in Polar Region,” In: M. Kanao, et al., Eds., Seismic Waves—Research and Analysis, InTech. Publisher, Rijeka, 2012, pp. 1-20. doi:10.5772/1400
[21] M. Hedlin and B. Alcoverro, “The Use of Impedance Matching Capillaries for Reducing Resonance in Rosette Infrasonic Spatial Filters,” Journal of the Acoustical Society of America, Vol. 117, No. 4, 2005, pp. 1880-1888. doi:10.1121/1.1760778
[22] R. Butler and K. Anderson, “Global Seismographic Network (GSN),” IRIS Report, 2008, pp. 6-7.

comments powered by Disqus

Copyright © 2020 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.