Common Fixed Point Theorems in Intuitionistic Fuzzy Metric Spaces
Saurabh Manro, Sanjay Kumar, Shivdeep Singh
.
DOI: 10.4236/am.2010.16067   PDF   HTML     5,712 Downloads   11,952 Views   Citations

Abstract

In this paper, we introduce the concept of – chainable intuitionistic fuzzy metric space akin to the notion of – chainable fuzzy metric space introduced by Cho, and Jung [1] and prove a common fixed point theorem for weakly compatible mappings in this newly defined space.

Share and Cite:

S. Manro, S. Kumar and S. Singh, "Common Fixed Point Theorems in Intuitionistic Fuzzy Metric Spaces," Applied Mathematics, Vol. 1 No. 6, 2010, pp. 510-514. doi: 10.4236/am.2010.16067.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] S. H. Cho and J. H. Jung, “On Common Fixed Point Theorems in Fuzzy Metric Spaces,” International Mathematical Forum, Vol. 1, No. 29, 2006, pp. 1441-1451.
[2] K. Atanassov, “Intuitionistic Fuzzy Sets,” Fuzzy Sets and System, Vol. 20, No. 1, 1986, pp. 87-96.
[3] D. Coker, “An Introduction to Intuitionistic Fuzzy Topological Spaces,” Fuzzy Sets and System, Vol. 88, No. 1, 1997, pp. 81-89.
[4] C. Alaca, D. Turkoglu and C. Yildiz, “Fixed Points in Intuitionistic Fuzzy Metric Spaces,” Chaos, Solitons & Fractals, Vol. 29, No. 5, 2006, pp. 1073-1078.
[5] S. Banach, “Theorie Les Operations Lineaires, Manograie Mathematyezne Warsaw Poland,” In French, Z Subwencji Funduszu Kultury Narodowej, New York, 1932.
[6] D. Turkoglu, C. Alaca, Y. J. Cho and C. Yildiz, “Common Fixed Point Theorems in Intuitionistic Fuzzy Metric spaces,” Journal of Applied Mathematics and Computing, Vol. 22, No. 1-2, 2006, pp. 411-424.
[7] G. Jungck, “Commuting Mappings and Fixed Points,” American Mathematical Monthly, Vol. 83, No. 4, 1976, pp. 261-263.
[8] R. P. Pant, “Common Fixed Points of Noncommuting Mappings,” Journal of Mathematical Analysis and Applications, Vol. 188, No. 2, 1994, pp. 436-440.
[9] V. Gregori, S. Romaguera and P. Veeramani, “A Note on Intuitionistic Fuzzy Metric Spaces,” Chaos, Solitons & Fractals, Vol. 28, No. 4, 2006, pp. 902-905.
[10] R. Saadati and J. H. Park, “On the Intuitionistic Fuzzy Topological Spaces,” Chaos, Solitons & Fractals, Vol. 27, No. 2, 2006, pp. 331-344.
[11] M. Grabiec, “Fixed Points in Fuzzy Metric Spaces,” Fuzzy Sets and Systems, Vol. 27, No. 3, 1988, pp. 385-389.
[12] M. Imdad and Javid Ali, “Some Common Fixed Point Theorems in Fuzzy Metric Spaces,” Mathematical Communication, Vol. 11, No. 12, 2006, pp. 153-163.
[13] J. H. Park, “Intuitionistic Fuzzy Metric Spaces,” Chaos, Solitons & Fractals, Vol. 22, No. 52004, pp. 1039-1046.
[14] J. S. Park, Y. C. Kwun and J. H. Park, “A Fixed Point Theorem in the Intuitionistic Fuzzy Metric Spaces,” Far East Journal of Mathematical Sciences, Vol. 16, No. 2, 2005, pp. 137-149.
[15] D. Turkoglu, C. Alaca and C. Yildiz, “Compatible Maps and Compatible Maps of Types (α) and (β) in Intuitionistic Fuzzy Metric Spaces,” Demonstration Mathematica, Vol. 39, No. 3, 2006, pp. 671-684.
[16] B. Schweizer and A. Sklar, “Statistical Metric Spaces,” Paci?c Journal Mathematic, Vol. 10, 1960, pp. 314-334.
[17] C. Alaca, I. Altun and D. Turkoglu, “On Compatible Mappings of Type (I) and Type (II) in Intuitionistic Fuzzy Metric Spaces,” Korean Mathematical Society, Vol. 23, No. 3, 2008, pp. 427-446.
[18] G. Jungck, “Compatible Mappings and Common Fixed Points,” International Journal of Mathematics and Mathematical Sciences, Vol. 9, No. 4, 1986, pp. 771-779.
[19] G. Jungck and B. E. Rhoades, “Fixed Point for Set Valued Functions without Continuity,” Indian Journal of Pure and Applied Mathematics, Vol. 29, No. 3, 1998, pp. 227-238.

Copyright © 2021 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.