Effect of Ca on the Properties of Gd-Doped Ceria for IT-SOFC


Ceria based electrolyte materials are very useful in intermediate-temperature solid oxide fuel cell (IT-SOFC). The compositions Ce0.85Gd0.15 - xCaxO2 - δ (x = 0.0 - 0.075) were prepared through sol-gel method. Their structure was studied by X-ray diffraction. Dense ceramic Ce0.85Gd0.15 - xCaxO2 - δ samples were prepared by sintering the pellets at 1300°C. The lattice parameter was calculated by Rietveld refinement of XRD patterns. Four probe A.C. impedance spectroscopy was used to study the total ionic conductivity of doped and co-doped ceria ceramics in the temperature range 200°C - 700°C. The Ce0.85Gd0.15 -xCaxO2 -δ composition showed maximum ionic conductivity with less activation energy.

Share and Cite:

S. Ramesh, G. Upender, K. Raju, G. Padmaja, S. Reddy and C. Reddy, "Effect of Ca on the Properties of Gd-Doped Ceria for IT-SOFC," Journal of Modern Physics, Vol. 4 No. 6, 2013, pp. 859-863. doi: 10.4236/jmp.2013.46116.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] H. Inaba and H. Tagawa, Solid State Ionics, Vol. 83, 1996, pp. 1-16. doi:10.1016/0167-2738(95)00229-4
[2] J. A. Kilner, Solid State Ionics, Vol. 129, 2000, pp. 13-23. doi:10.1016/S0167-2738(99)00313-6
[3] B. C. H. Steele, Solid State Ionics, Vol. 129, 2000, pp. 95-110. doi:10.1016/S0167-2738(99)00319-7
[4] S. Ramesh, V. P. Kumar, P. Kistaiah and C. Vishnuvardhan Reddy, Solid State Ionics, Vol. 181, 2010, pp. 86-91. doi:10.1016/j.ssi.2009.11.014
[5] S. Ramesh and C. Vishnuvardhan Reddy, Acta Physica Polonica A, Vol. 115, 2009, pp. 909-913.
[6] H. D. Wiemhofer, Solid State Ionics, Vol. 117, 1999, pp. 229-243. doi:10.1016/S0167-2738(98)00408-1
[7] K. Kim, B. H. Kim and D. Lee, Journal of Power Sources, Vol. 90, 2000, pp. 139-143. doi:10.1016/S0378-7753(00)00389-X
[8] Y. Liu, B. Li B, X. Wei and W. J. Pan, Journal of the American Ceramic Society, Vol. 91, 2008, pp. 3926-3930. doi:10.1111/j.1551-2916.2008.02748.x
[9] X. Sha, Z. Lu, X. Huang, J. Miao, Z. Liu, X. Xin, Y. Zhang and W. Su, Journal of Alloys and Compounds, Vol. 433, 2007, pp. 274-278. doi:10.1016/j.jallcom.2006.06.062
[10] F. Y. Wang, B. Z. Wan and S. Cheng, Journal of Solid State Electrochemistry Communications, Vol. 9, 2005, pp. 168-173.
[11] F. Y. Wang, S. Chen, Q. Wang, S. Yu and S. Cheng, Catalysis Today, Vol. 97, 2004, pp. 189-194. doi:10.1016/j.cattod.2004.04.059
[12] N. Cioatera, V. Parvulescu, A. Rolle and R. N. Vannier, Solid State Ionics, Vol. 180, 2009, pp. 681-687. doi:10.1016/j.ssi.2009.02.025
[13] Y. F. Zheng, H. T. Gu, H. Chen, L. Gao, X. F. Zhu and L. C. Guo, Materials Research Bulletin, Vol. 44, 2009, pp. 775-779. doi:10.1016/j.materresbull.2008.09.021
[14] H. Yoshida, T. Inagaki, K. Miura, M. Inaba and Z. Ogumi, Solid State Ionics, Vol. 160, 2003, pp. 109-116. doi:10.1016/S0167-2738(03)00153-X
[15] R. D. Shannon, Acta Crystallographica Section A, Vol. 32, 1976, pp. 751-767. doi:10.1107/S0567739476001551
[16] W. Lai and S. M. Haile, Journal of the American Ceramic Society, Vol. 89, 2005, pp. 2979-2997. doi:10.1111/j.1551-2916.2005.00740.x

Copyright © 2021 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.