Electrochemical Detection of Sudan I Using a Multi-Walled Carbon Nanotube/Chitosan Composite Modified Glassy Carbon Electrode

Abstract

In this work, a simple and sensitive electrochemical method was developed to determine Sudan I by cyclic voltammetry and differential pulse voltammetry using a glassy carbon electrode modified with a chitosan/carbon nanotube composite. In cyclic voltammetry, Sudan I exhibited a well-defined oxidation peak located at 0.72 V at the multi-walled carbon nanotube (MWCNT)/chitosan-modified GCE. The determination conditions, including pH, scan rate, and chitosan: MWCNT mass ratio at the modified electrode, were optimized. Under the optimum experimental conditions, Sudan I could be linearly detected by differential pulse voltammetry with a detection limit of 3.0 × 10-8 mol?L-1.

Share and Cite:

M. Wu, W. Tang, J. Guimarães, Q. Wang, P. He and Y. Fang, "Electrochemical Detection of Sudan I Using a Multi-Walled Carbon Nanotube/Chitosan Composite Modified Glassy Carbon Electrode," American Journal of Analytical Chemistry, Vol. 4 No. 6A, 2013, pp. 1-6. doi: 10.4236/ajac.2013.46A001.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] V. Martínek and M. Stiborová, “Metabolism of Carcinogenic Azo Dye Sudan I by Rat, Rabbit, Minipig and Human Hepatic Microsomes,” Collection of Czechoslovak Chemical Communications, Vol. 67, No. 12, 2002, pp. 1883-1898. doi:10.1135/cccc20021883
[2] R. Rebane, I. Leito, S. Yurchenko and K. Herodes, “A Review of Analytical Techniques for Determination of Sudan I–IV Dyes in Food Matrixes,” Journal of Chromatography A, Vol. 1217, No. 17, 2010, pp. 2747-2757. doi:10.1016/j.chroma.2010.02.038
[3] Y. Zhang, Y. Zhang, W. Gong, A. Gopalan and K. Lee, “Rapid Separation of Sudan Dyes by Reverse-Phase High Performance Liquid Chromatography through Statistically Designed Experiments,” Journal of Chromatography A, Vol. 1098, No. 1-2, 2005, pp. 183-187. doi:10.1016/j.chroma.2005.10.024
[4] C. Yu, Q. Liu, L. Lan and B. Hu, “Comparison of Dual Solvent-Stir Bars Microextraction and U-Shaped Hollow Fiber-Liquid Phase Microextraction for the Analysis of Sudan Dyes in Food Samples by High-Performance Liquid Chromatography-Ultraviolet/Mass Spectrometry,” Journal of Chromatography A, Vol. 1188, No. 2, 2008, pp. 124-131. doi:10.1016/j.chroma.2008.02.065
[5] K. Molder, A. Kunnapas, K. Herodes and I. Leito, “Fast Peaks in Chromatograms of Sudan Dyes,” Journal of Chromatography A, Vol. 1160, No. 1-2, 2007, pp. 227-234. doi:10.1016/j.chroma.2007.05.052
[6] W. Liu, W. Zhao, J. Chen and M. Yang, “A Cloud Point Extraction Approach Using Triton X-100 for the Separation and Preconcentration of Sudan Dyes in Chilli Powder,” Analytica Chimica Acta, Vol. 605, No. 1, 2007, pp. 41-45. doi:10.1016/j.aca.2007.10.034
[7] M. Ma, X. Luo, B. Chen, S. Su and S. Yao, “Simultaneous Determination of Water-Soluble and Fat-Soluble Synthetic Colorants in Foodstuff by High-Performance Liquid Chromatography–Diode Array Detection-Electrospray Mass Spectrometry,” Journal of Chromatography A, Vol. 1103, No. 1, 2006, pp. 170-176. doi:10.1016/j.chroma.2005.11.061
[8] V. Cornet, G. Yasmine, M. Goedele, J. Loco and J. Degroodt, “Development of a Fast Analytical Method for the Determination of Sudan Dyes in Chili- and Curry-Containing Foodstuffs by High-Performance Liquid Chromatography-Photodiode Array Detection,” Journal of Agricultural and Food Chemistry, Vol. 54, No. 3, 2006, pp. 639-644. doi:10.1021/jf0517391
[9] E. Ertas, H. Ozer and C. Alasalvar, “A Rapid HPLC Method for Determination of Sudan Dyes and Para Red in Red Chilli Pepper,” Food Chemistry, Vol. 105, No. 2, 2007, pp. 756-760. doi:10.1016/j.foodchem.2007.01.010
[10] L. He, Y. Su, B. Fang, X. Shen, Z. Zeng and Y. Liu, “Determination of Sudan Dye Residues in Eggs by Liquid Chromatography and Gas Chromatography-Mass Spectrometry,” Analytica Chimica Acta, Vol. 594, No. 1, 2007, pp. 139-146. doi:10.1016/j.aca.2007.05.021
[11] E. Mejia, Y. Ding, M. Mora and C. Garcia, “Determination of Banned Sudan Dyes in Chili Powder by Capillary Electrophoresis,” Food Chemistry, Vol. 102, No. 4, 2007, pp. 1027-1033. doi:10.1016/j.foodchem.2006.06.038
[12] Y. Wang, D. Wei, H. Yang, Y. Yang, W. Xing, Y. Li and A. Deng, “Development of a Highly Sensitive and Specific Monoclonal Antibody-Based Enzyme-Linked Immunosorbent Assay (ELISA) for Detection of Sudan I in Food Samples,” Talanta, Vol. 77, No. 5, 2009, pp. 1783- 1789. doi:10.1016/j.talanta.2008.10.016
[13] D. Han, M. Yu, D. Knopp, R. Niessner, M. Wu and A. Deng, “Development of a Highly Sensitive and Specific Enzyme-Linked Immunosorbent Assay for Detection of Sudan I in Food Samples,” Journal of Agricultural and Food Chemistry, Vol. 55, No. 16, 2007, pp. 6424-6430. doi:10.1021/jf071005j
[14] Y. Liu, Z. Song, F. Dong and L. Zhang, “Flow Injection Chemiluminescence Determination of Sudan I in Hot Chilli Sauce,” Journal of Agricultural and Food Chemistry, Vol. 55, No. 3, 2007, pp. 614-617. doi:10.1021/jf063332h
[15] L. P. Wu, Y. F. Li, C. Z. Huang and Q. Zhang, “Visual Detection of Sudan Dyes Based on the Plasmon Resonance Light Scattering Signals of Silver Nanoparticles,” Analytical Chemistry, Vol. 78, No. 15, 2006, pp. 5570-5577. doi:10.1021/ac0603577
[16] M. Du, X. Han, Z. Zhou and S. Wu, “Determination of Sudan I in Hot Chili Powder by Using an Activated Glassy Carbon Electrode,” Food Chemistry, Vol. 105, No. 2, 2007, pp. 883-888. doi:10.1016/j.foodchem.2006.12.039
[17] M. Inagaki, K. Kaneko and T. Nishizawa, “Nanocarbons- Recent Research in Japan,” Carbon, Vol. 42, No. 8-9, 2004, pp. 1401-1417. doi:10.1016/j.carbon.2004.02.032
[18] Y. Yang, S. Chen, Q. Xue, A. Biris and W. Zhao, “Electron Transfer Chemistry of Octadecylamine-Functionalized Single-Walled Carbon Nanotubes,” Electrochimca. Acta, Vol. 53, No. 14, 2008, p. 4936. doi:10.1016/j.electacta.2008.02.016
[19] D. Yang, L. Zhu and X. Jiang, “Electrochemical Reaction Mechanism and Determination of Sudan I at a Multi-Wall Carbon Nanotubes Modified Glassy Carbon Electrode,” Journal of Electroanalytical Chemistry, Vol. 640, No. 1-2, 2010, pp. 17-22. doi:10.1016/j.jelechem.2009.12.022
[20] T. Gan, K. Li and K. Wu, “Multi-Wall Carbon Nanotube- Based Electrochemical Sensor for Sensitive Determination of Sudan I,” Sensors and Actuators B, Vol. 132, No. 1, 2008, pp. 134-139. doi:10.1016/j.snb.2008.01.013
[21] D. Yang, L. Zhu, X. Jiang and L. Guo, “Sensitive Determination of Sudan I at an Ordered Mesoporous Carbon Modified Glassy Carbon Electrode,” Sensors and Actuators B, Vol. 141, No. 1, 2009, pp. 124-129. doi:10.1016/j.snb.2009.05.030
[22] Y. Wu, “Electrocatalysis and Sensitive Determination of Sudan I at the Singlewalled Carbon Nanotubes and Iron(Ⅲ)-Porphyrin Modified Glassy Carbon Electrodes,” Food Chemistry, Vol. 121, No. 2, 2010, pp. 580-584.
[23] H. Yin, Y. Zhou, X. Meng, T. Tang, S. Ai and L. Zhu, “Electrochemical Behaviour of Sudan I at Fe3O4 Nanoparticles Modified Glassy Carbon Electrode and Its Determination in Food Samples,” Food Chemistry, Vol. 127, No. 3, 2011, pp. 1348-1353. doi:10.1016/j.foodchem.2011.01.097
[24] M. Zhang, A. Smith and W. Gorski, “Carbon Nanotube- Chitosan System for Electrochemical Sensing Based on Dehydrogenase Enzymes,” Analytical Chemistry, Vol. 76, No. 17, 2004, pp. 5045-5050. doi:10.1021/ac049519u
[25] M. Zhang, C. Mullens and W. Gorski, “Coimmobilization of Dehydrogenases and Their Cofactors in Electrochemical Biosensors,” Analytical Chemistry, Vol. 79, No. 6, 2007, pp. 2446-2450. doi:10.1021/ac061698n
[26] M. Zhang and W. Gorski, “Electrochemical Sensing Based on Redox Mediation at Carbon Nanotubes,” Analytical Chemistry, Vol. 77, No. 13, 2007, pp. 3960-3965. doi:10.1021/ac050059u
[27] Y. Zhang and J. Zheng, “Direct Electrochemistry and Electrocatalysis of Cytochrome c Based on Chitosa-Room Temperature Ionic Liquid-Carbon Nanotubes Composite,” Electrochimica Acta, Vol. 54, No. 2, 2008, pp. 749- 754. doi:10.1016/j.electacta.2008.06.066
[28] A. Babaei, M. Afrasiabi and M. Babazadeh. “A Glassy Carbon Electrode Modified with Multiwalled Carbon Nanotube/Chitosan Composite as a New Sensor for Simultaneous Determination of Acetaminophen and Mefenamic Acid in Pharmaceutical Preparations and Biological Samples,” Electroanalysis, Vol. 22, No. 15, 2010, pp. 1743- 1749. doi:10.1002/elan.200900578

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.