Phytoremediation Dynamic Model as an Assessment Tool in the Environmental Management


Phytoremediation is considered a viable and cost effective emerging technology to clean-up trace elements. This approach has not been fully commercialized due the existence of various concerns about it. Those can be summarized as the uncertainty of the system behaviors at different scenarios, such as: contaminant, contaminant concentration and the behaviors of the physiology in the plant. Previous approaches have implemented diverse mathematical algorithms to characterize phytoremediation systems, such as: differential equation solution sets, statistical correlation and system dynamics approach. Phytoremediation Dynamic Model (PDM) employed the classical plant structure to simulate plant-soil-pollutant interaction. This model has proved its capability to mimic phytovolatilization processes of mercury chloride, obtaining more than 95% of correlation between the experimental data, and also provides the capability to know the contaminant flow rate and its concentration in plant tissue. The differential equations system which describes the model includes a comprehensive parameter which encapsulates plant bioavailability dependence in the contaminant-media interaction as a novel approach because this has not been found on the literature previously. PDM has proved the ability to mimic plant response as a function of contaminant concentration and the applicability as an assessment tool for phytoremediation system performance.

Share and Cite:

R. Canales-Pastrana and M. Paredes, "Phytoremediation Dynamic Model as an Assessment Tool in the Environmental Management," Open Journal of Applied Sciences, Vol. 3 No. 2, 2013, pp. 208-217. doi: 10.4236/ojapps.2013.32028.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] Environment Canada, “Global Mercury Circulation,” 2010.
[2] N. Piorrone and K. R. Mahaffey, “Where We Stand on Mercury Pollution and Its Health Effects on Regional and Global Scales,” In: N. Piorrone and K. R. Mahaffey, Eds., Dynamics of Mercury Pollution on Regional and Global Scales: Atmospheric Processes and Human Exposures around the World, Springer Science + Business Media, Inc., New York, 2006, pp. 1-21.
[3] J. Sardans, F. Montes and J. Pe?uelas, “Determination of As, Cd, Cu, Hg, and Pb in Biological Samples by Modern Electrothermal Atomic Absorption Spectrometry,” Spectrochimica Acta Part B, Vol. 65, No. 2, 2010, pp. 97-112. doi:10.1016/j.sab.2009.11.009
[4] B. Pezzarossa, F. Gorini and G. Petruzzelli, “Heavy Metal and Selenium Distribution and Bioavailability in Contaminated Sites: A Tools for Phytoremediation,” In: H. Magdi, Ed., Dynamics and Bioavailability of Heavy Metals in the Roots Zone, CRC Press Taylor & Francis Group, Florida, 2011, pp. 93-127. doi:10.1201/b10796-5
[5] “World Commission on Environment and Development United Nation Our Common Future,” United Nation, 1987.
[6] J. R. Henry, “An Overview of the Phytoremediation of Lead and Mercury,” US Environmental Protection Agency Office of Solid Waste and Emergency Response Technology Innovation, Washington DC, 2000, p. 55.
[7] I. Renberg, C. Bigler, R. Bindler, M. Norberg, J. Rydberg and U. Segrestr?m, “Environmental History: A Piece in the Puzzle for Establishing Plans for Environmental Management,” Journal of Environmental Management, Vol. 90, No. 8, 2009, pp. 2794-2800. doi:10.1016/j.jenvman.2009.03.008
[8] J. M. Wood, “Biological Cycles for Toxic Elements in the Environment,” Science, Vol. 183, No. 4129, 1974, pp. 1049-1052. doi:10.1126/science.183.4129.1049
[9] W. P. Redley, L. J. Dizikes and J. M. Wood, “Biological Cycles for Toxic Elements in the Environment,” Science, Vol. 197, No. 4301, 1977, pp. 329-332. doi:10.1126/science.877556
[10] A. Shafaghat, F. Salimi, M. Valiei, J. Salehzadeh and M. Shafaghat, “Removal of Heavy Metals (Pb2+, Cu2+ and Cr3+) from Aqueous Solutions Using Five Plants Materials,” African Journal of Biotechnology, Vol. 11, No. 4, 2012, pp. 852-855.
[11] S. E. Sundberg, J. J. Ellington, J. J. Evans, D. A. Keys and J. W. Fisher, “Accumulation of Perchlorate in Tobacco Plants: Developments of a Plant Kinetic Model,” Journal of Environmental Monitoring, Vol. 5, No. 3, 2003, pp. 505-512. doi:10.1039/b300570d
[12] N. V. Smith-Downey, E. M. Sunderland and D. J. Jacob, “Anthropogenic Impacts on Global Storage and Emissions of Mercury from Terrestrial Soils: Insights from a New Global Model,” Journal of Geophysical Research, Vol. 115, No. G3, 2010, pp. 1-11.
[13] E. S. Corbitt, D. J. Jacob, C. D. Holmes, D. G. Streets and E. M. Sunderland, “Global Source-Receptor Relationship for Mercury Deposition under Present-Day and 2050 Emissions Scenarios,” Environmental Science & Technology, Vol. 45, No. 24, 2011, pp. 10477-10484. doi:10.1021/es202496y
[14] S. Polasky, S. R. Carpenter, C. Folke and B. Keeler, “Decision-Making under Great Uncertainty: Environmental Management in an Era of Global Change,” Trends in Ecology and Evolution, Vol. 26, No. 8, 2011, pp. 398-404. doi:10.1016/j.tree.2011.04.007
[15] C. Franco, A. Soares and J. Delgado, “Geostatistical Modeling of Heavy Metal Contamination in the Topsoil of Guadiamar River Margins (S Spain) Using a Stochastic Simulation Technique,” Geoderma, Vol. 136, No. 3-4, 2006, pp. 852-864. doi:10.1016/j.geoderma.2006.06.012
[16] C. Bini, “Frorm Soil Contamination to Land Restoration,” Nova Science Publisher, New York, 2010.
[17] European Commission, “Soil Protection: The Story Behind the Strategy,” EU: European Communities, Luxembourg, 2006.
[18] M. J. McLaughlina, D. R. Parkerb and J. M. Clarkec, “Metals and Micronutrients—Food Safety Issues,” Field Crops Research, Vol. 60, No. 1-2, 1999, pp. 143-163. doi:10.1016/S0378-4290(98)00137-3
[19] F. Mapanda, E. N. Mangwayana, J. Nyamangara and K. E. Gillera, “The Effects of Long-Term Irrigation Using Waste water on Heavy Metal Contents of Soils under Vegetables Harare, Zimbabwe,” Agriculture, Ecosystems & Environment, Vol. 107, No. 2-3, 2005, pp. 151-165. doi:10.1016/j.agee.2004.11.005
[20] Y. Cui, Y. Zhu, R. Zhai, D. Chen, Y. Huang, Y. Qui and J. Liang, “Transfer of Metals from Soil to Vegetables in an Area near a Smelter in Nanning, China,” Environmental International, Vol. 30, No. 6, 2004, pp. 785-791. doi:10.1016/j.envint.2004.01.003
[21] S. K?renlampi, H. Schat, J. Vangronsveld, J. A. C. Verkleij, D. Lelie, M. Mergeay and A. I. Tervahauta, “Genetic Engineering in the Improvement of Plants for Phytore mediation of Metal Polluted Soil,” Environmental Pollution, Vol. 107, No. 2, 2000, pp. 225-231. doi:10.1016/S0269-7491(99)00141-4
[22] J. Hinton and M. Veiga, “Mercury Contaminated Sites: A Review of Remedial Solutions,” Proceeding of National Institute for Minamata Disease, Minamata, 19-20 March 2001.
[23] G. Wu, H. Kang, X. Zhang, H. Shao, L. Chu and C. Ruan, “A Critical Review on the Bio-Removal of Hazardous Heavy Metals from Contaminated Soils: Issues, Progress, Eco-Environmental Concerns and Opportunities,” Journal of Hazardous Materials, Vol. 174, No. 1-3, 2010, pp. 1-8. doi:10.1016/j.jhazmat.2009.09.113
[24] E. Meers, F. M. G. Tack, S. Van Slycken, A. Ruttens, G. Du Laing, J. Vangronsveld and M. G. Verloo, “Chemically Assisted Phytoextraction: A Review of Potential Soil Amendments for Increasing Plant Uptake of Heavy Metals,” International Journal of Phytoremediation, Vol. 10, No. 5, 2008, pp. 390-414. doi:10.1080/15226510802100515
[25] M. H. Fulekar and J. Sharma, “Bioinformatics Applied in Bioremediation,” Innovative Romanian Food Biotechnology, Vol. 2, No. 2, 2008, pp. 28-36.
[26] O. V. Singh, S. Labana, G. Pandey, R. Budhiraja and R. K. Jain, “Phytoremediation: An Overview of Metallic Ion Decontamination from Soil,” Applied Microbiology and Biotechnology, Vol. 61, No. 5-6, 2003, pp. 405-412.
[27] C. D. Jadia and M. H. Fulekar, “Phytoremediation of Heavy Metals: Recent Techniques,” African Journal of Biotechnology, Vol. 8, No. 6, 2009, pp. 921-928.
[28] M. Zhang, Z. Liu and H. Wang, “Use of Single Extraction Method to Predict Bioavailability of Heavy Metals in Polluted Soils to Rice,” Communications in Soil Science and Plant Analysis, Vol. 41, No. 7, 2010, pp. 820-831. doi:10.1080/00103621003592341
[29] Environmental Protection Agency, “Introduction to Phytoremediation,” Environmental Protection Agency, Ohio, 2000, pp. 1-72.
[30] H. Sarma, “Metal Hyperaccumulation in Plants: A Re view Focusing on Phytoremediation Technology,” Journal of Environmental Science and Technology, Vol. 4, No. 2, 2011, pp. 118-138. doi:10.3923/jest.2011.118.138
[31] A. D. Pueke and H. Rennenberg, “Phytoremediation: Molecular Biology, Requirements for Application, Environmental Protection, Public Attention and Feasibility,” European Molecular Biology Organization, Vol. 6, No. 6, 2005, pp. 497-501.
[32] Technology Innovation Program-Environmental Protection Agency, Environmental Protection Agency, 2008.
[33] X.-B. Zhang, P. Liu, Y.-S. Yang and W.-R. Chen, “Phytoremediation of Urban Wastewater by Model Wetlands with Ornamental Hydrophytes,” Journal of Environmental Science, Vol. 19, No. 8, 2007, pp. 902-909. doi:10.1016/S1001-0742(07)60150-8
[34] C. Lafabrie, K. M. Major, C. S. Major and J. Cebrián, “Arsenic and Mercury Bioaccumulation in the Aquatic Plant, Vallisneria neotropicallis,” Chemosphere, Vol. 82, No. 10, 2011, pp. 1393-1400. doi:10.1016/j.chemosphere.2010.11.070
[35] P. Zornoza, R. Millán, M. J. Sierra and E. Esteban, “Efficiency of White Lupin in the Removal of Mercury from Contaminated Soils: Soil and Hydroponic Experiments,” Journals of Environmental Science, Vol. 22, No. 3, 2010, pp. 421-427. doi:10.1016/S1001-0742(09)60124-8
[36] A. Harfouche, R. Meilan and A. Altman, “Tree Genetic Engineering and Applications to Sustainable Forestry and Biomass Production,” Trends in Biotechnology, Vol. 29, No. 1, 2011, pp. 9-17. doi:10.1016/j.tibtech.2010.09.003
[37] A. C. P. Heaton, C. L. Rugh, N. J. Wang, R. B. Meagher, “Phytoremediation of Mercury and Methylmercury-Polluted Soils Using Genetically Engineered Plants,” Journal of Soil Contamination, Vol. 7, No. 4, 1988, pp. 497-509.
[38] C. L. Rugh, H. D. Wilde, N. M. Stack, D. M. Thomson, A. O. Summers and R. B. Meagher, “Mercuric Ion Reduction and Resistance in Transgenic Arabidopsis thaliana Plants Expressing a Modified Bacterial merA Gene,” Proceeding of National Science, Vol. 93, No. 8, 1996, pp. 3182-3187. doi:10.1073/pnas.93.8.3182
[39] U. Kr?mer, “Phytoremediation: Novel Approaches to Cleaning up Polluted Soils,” Current Opinion in Biotechnology, Vol. 16, No. 2, 2005, pp. 133-141. doi:10.1016/j.copbio.2005.02.006
[40] H. S. Hussein, O. N. Ruiz, N. Terry and H. Daniell, “Phytoremediation of Mercury and Organomercurial in Choloplast Transgenic Plants: Enhanced Roots Uptake, Trans location to Shoots, and Volatilization,” Environmental Science Technology, Vol. 41, No. 24, 2007, pp. 8439-8446. doi:10.1021/es070908q
[41] N. A. Sorkhoh, N. Ali, H. Al-Awadhi, N. Dashti, D. M. Al-Mailem, M. Eliyas and S. S. Radwan, “Phytoremediation of Mercury in Pristine and Crude Oil Contaminated soil: Contributions of Rhizobacteria and Their Host Plants to Mercury Removal,” Ecotoxicology and Environmental Safety, Vol. 73, No. 8, 2010, pp. 1998-2003. doi:10.1016/j.ecoenv.2010.08.033
[42] M. Israr, A. Jewell, D. Kumar and S. V. Sahi, “Interactive Effects of Lead, Copper, Nickel and Zinc on Growth, Metal Uptake and Antioxidative Metabolism of Sesbania drummondii,” Journal of Hazardous Materials, Vol. 186, No. 1-2, 2011, pp. 1520-1526. doi:10.1016/j.jhazmat.2010.12.021
[43] X. Wang. L. Q. Ma, B. Rathinasabapathi, Y. Liu and G. Zeng, “Uptake and Translocation of Arsenite and Arsenate by Pteris vittata L.: Effects of Silicon, Boron and Mercury,” Environmental and Experimental Botany, Vol. 68, No. 2, 2010, pp. 222-229. doi:10.1016/j.envexpbot.2009.11.006
[44] J. V. Deuren, T. Lloyd, S. Chhetry, R. Liou and J. Peck, “Remediation Technologies Screening Matrix and Reference Guide: Version 4.0. Federal Remediation Technology Roundtable,” 2006.
[45] J. D. Sterman, “Misperceptions of Feedback in Dynamic Decision Making,” Organizational Behavior and Human Decision Process, Vol. 43, No. 3, 1989, pp. 301-335. doi:10.1016/0749-5978(89)90041-1
[46] D. K. Benbi and R. Nieder, “Handbook of Processes and Modeling in Soil-Plant System,” Food Products Press and The Haworth Reference Press, Binghamton, 2003, p. 762.
[47] S. C. McCutcheon and J. L. Schnoor, “Phytoremediation: Transformation and Control of Contaminants,” Wiley-In terscience Inc., Hoboken, 2003, p. 987.
[48] B. Robinson, J. E. Ferández, P. Madejón, T. Mara?ón, J. M. Murillo, S. Green and B Clothier, “Phytoextraction: An Assessment of Biogeochemical and Economic Viability,” Plant and Soil, Vol. 249, No. 1, 2003, pp. 117-125. doi:10.1023/A:1022586524971
[49] S. Trapp, “Plant Uptake and Transport Models for Neutral and Ionic Chemical,” Environmental Science and Pollution Research, Vol. 11, No. 1, 2004, pp. 33-39. doi:10.1065/espr2003.08.169
[50] D. M. Thomas, L. Vandemuelebroeke and K. Yamaguchi, “A Mathematical Evolution Model for Phytoremediation of Metals,” Discrete and Continuous Dynamical System Series B, Vol. 5, No. 2, 2005, pp. 411-422.
[51] J. Japenga, G. F. Koopmans, J. Song and P. F. A. M. R?mkens, “A Feasibility Test to Estimate the Duration of Phytoextraction of Heavy Metals from Polluted Soils,” International Journals of Phytoremediation, Vol. 9, No. 2, 2007, pp. 115-132. doi:10.1080/15226510701232773
[52] H. Qu, Q. Zhu, M. Guo and Z. Lu, “Simulation of Carbon-Based Model for Virtual Plants as Complex Adaptive System,” Simulation Modeling Practice and Theory, Vol. 18, No. 6, 2010, pp. 677-695. doi:10.1016/j.simpat.2010.01.004
[53] Y. Ouyang, “Phytoremediation: Modeling Plant Uptake and Contaminant Transport in the Soil-Plant-Atmosphere Continuum,” Journal of Hydrology, Vol. 266, No. 1-2, 2002, pp. 66-82. doi:10.1016/S0022-1694(02)00116-6
[54] Y. Ouyang, C. H. Huang, D. Y. Huang, D. Lin and L. Cui, “Simulating Uptake and Transport of TNT by Plants Using STELLA,” Chemosphere, Vol. 69, No. 8, 2007, pp. 1245-1252. doi:10.1016/j.chemosphere.2007.05.081
[55] Y. Ouyang, “Modeling the Mechanisms for Uptake and Translocation of Dioxane in a Soil-Plant Ecosystem with STELLA,” Journal of Contaminant Hydrology, Vol. 95, No. 1-2, 2008, pp. 17-29. doi:10.1016/j.jconhyd.2007.07.010
[56] M. M. Lasat, “Phytoextraction of Metal from Contaminated Soil: A Review of Plant/Soil/Metal Interaction and Assessment of Pertinent Agronomic Issues,” Journal of Hazardous Substance Research, Vol. 2, No. 5, 2000, pp. 1-25.
[57] M. L. Almendras, M. Carballa, L. Diels, K. Vanbroekhoven and R. Chamy, “Prediction of Heavy Metal Mobility and Bioavailability in Contaminated Soil Using Sequential Extraction and Biosensors,” Journal of Environmental Engineering, Vol. 135, No. 9, 2009, pp. 839-844. doi:10.1061/(ASCE)0733-9372(2009)135:9(839)
[58] J. A. Rodríguez, A. Vázquez, J. M. Grau, C. Martínez and M. López, “Factors Controlling the Spatial Variability of Mercury Distribution in Spain Topsoil,” Soil & Sediment Contamination, Vol. 18, No. 1, 2009, pp. 30-42.
[59] H. Yu, J. Ge, X. Zhong, M. Czakó and L. Márton, “Differential Mercury Volatilization by Tobacco Organs Expressing a Modified Bacterial merA Gene,” Cell Research, Vol. 11, No. 3, 2001, pp. 231-236. doi:10.1038/
[60] S. Bizily, C. C. Rugh, A. O. Summers and R. B. Meagher, “Phytoremediation of Methylmercury Pollution: merB Expression in Arabidopsis thaliana Plants Confer Resistance to Organomercurial,” Proceeding of National Academy of Science of the United States of America, Vol. 96, No. 12, 1999, pp. 6808-6813. doi:10.1073/pnas.96.12.6808
[61] O. N. Ruiz, H. S. Hussein, N. Terry and H. Daniell, “Phytoremediation of Organomercurial Compounds via Chloroplast Genetic Engineering,” Plant Physiology, Vol. 132, No. 3, 2003, pp. 1344-1352. doi:10.1104/pp.103.020958

Copyright © 2023 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.