Increased Seizure Susceptibility in a Mouse with Diacylglycerol Kinase β Deficiency

Abstract

Diacylglycerol kinase (DGK) is an enzyme that converts diacylglycerol to phosphatidic acid. Several DGK isoforms have been implicated in the pathogenesis of seizure, but the role of DGKβ in seizure is unknown. In the present study, we investigated the involvement of DGKβ in seizure using DGKβ knockout (KO) mice. Seizures were more severe in DGKβ KO mice than in wild-type (WT) mice after pentylenetetrazol (PTZ) treatment and after kainic acid treatment, but there were no differences in latency to seizure. The expression levels of DGKβ in the hippocampal CA1, CA3, or DG areas did not differ between PTZ (60 mg/kg) treatment and saline treatment. There were fewer parvalbumin-positive interneurons in the hippocampal CA3 area in DGKβ KO mice than in control WT mice, which might partly account for the increased seizure susceptibility displayed by DGKβ KO mice. These results suggest that DGKβ may play a pivotal role in the development of the relevant interneurons, and that on inherent deficiency of DGKβ increases the animals sensitivity to seizure-inducing stimuli.

Share and Cite:

M. Ishisaka, K. Tsuruma, M. Shimazawa, Y. Shirai, N. Saito and H. Hara, "Increased Seizure Susceptibility in a Mouse with Diacylglycerol Kinase β Deficiency," Neuroscience and Medicine, Vol. 4 No. 2, 2013, pp. 117-122. doi: 10.4236/nm.2013.42019.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] A. M. Siegel, “Presurgical Evaluation and Surgical Treatment of Medically Refractory Epilepsy,” Neurosurgical Review, Vol. 27, No. 1, 2004, pp. 1-18. doi:10.1007/s10143-003-0305-6
[2] H. Wallace, S. Shorvon and R. Tallis, “Age-Specific Incidence and Prevalence Rates of Treated Epilepsy in an Unselected Population of 2,052,922 and Age-Specific Fertility Rates of Women with Epilepsy,” Lancet, Vol. 352, No. 9145, 1998, pp. 1970-1973. doi:10.1016/S0140-6736(98)04512-7
[3] C. A. Reid, S. F. Berkovic and S. Petrou, “Mechanisms of Human Inherited Epilepsies,” Progress in Neurobiology, Vol. 87, No. 1, 2009, pp. 41-57. doi:10.1016/j.pneurobio.2008.09.016
[4] E. B. Rodriguez de Turco, W. Tang, M. K. Topham, F. Sakane, V. L. Marcheselli, C. Chen, A. Taketomi, S. M. Prescott and N. G. Bazan, “Diacylglycerol Kinase Epsilon Regulates Seizure Susceptibility and Long-Term Potentiation through Arachidonoyl-Inositol Lipid Signaling,” The Proceedings of the National Academy of Sciences, Vol. 98, No. 8, 2001, pp. 4740-4745. doi:10.1073/pnas.081536298
[5] M. Okada, Y. Hozumi, T. Tanaka, Y. Suzuki, M. Yanagida, Y. Araki, C. Evangelisti, H. Yagisawa, M. K. Topham, A. M. Martelli and K. Goto, “DGKzeta Is Degraded through the Cytoplasmic Ubiquitin-Proteasome System under Excitotoxic Conditions, Which Causes Neuronal Apoptosis Because of Aberrant Cell Cycle Reentry,” Cell Signalling, Vol. 24, No. 8, 2012, pp. 1573-1582. doi:10.1016/j.cellsig.2012.03.021
[6] K. Goto and H. Kondo, “Molecular Cloning and Expression of a 90-kDa Diacylglycerol Kinase That Predominantly Localizes in Neurons,” The Proceedings of the National Academy of Sciences, Vol. 90, No. 16, 1993, pp. 7598-7602. doi:10.1073/pnas.90.16.7598
[7] Y. Shirai, T. Kouzuki, K. Kakefuda, S. Moriguchi, A. Oyagi, K. Horie, S. Y. Morita, M. Shimazawa, K. Fukunaga, J. Takeda, N. Saito and H. Hara, “Essential Role of Neuron-Enriched Diacylglycerol Kinase (DGK), DGKbeta in Neurite Spine Formation, Contributing to Cognitive Function,” PLoS One, Vol. 5, No. 7, 2010, Article ID: e11602. doi:10.1371/journal.pone.0011602
[8] K. Kakefuda, A. Oyagi, M. Ishisaka, K. Tsuruma, M. Shimazawa, K. Yokota, Y. Shirai, K. Horie, N. Saito, J. Takeda and H. Hara, “Diacylglycerol Kinase Beta Knockout Mice Exhibit Lithium-Sensitive Behavioral Abnormalities,” PLoS One, Vol. 5, No. 10, 2011, Article ID: e13447. doi:10.1371/journal.pone.0013447
[9] M. Ishisaka, K. Kakefuda, A. Oyagi, Y. Ono, K. Tsuruma, M. Shimazawa, K. Kitaichi and H. Hara, “Diacylglycerol Kinase Beta Knockout Mice Exhibit Attention-Deficit Behavior and an Abnormal Response on Methylphenidate-Induced Hyperactivity,” PLoS One, Vol. 7, No. 5, 2012, Article ID: e37058. doi:10.1371/journal.pone.0037058
[10] H. Ali, T. Nakano, S. Saino-Saito, Y. Hozumi, Y. Katagiri, H. Kamii, S. Sato, T. Kayama, H. Kondo and K. Goto, “Selective Translocation of Diacylglycerol Kinase Zeta in Hippocampal Neurons under Transient Forebrain Ischemia,” Neuroscience Letters, Vol. 372, No. 3, 2004, pp. 190-195. doi:10.1016/j.neulet.2004.09.052
[11] A. Y. Wang, K. M. Lohmann, C. K. Yang, E. I. Zimmerman, H. Pantazopoulos, N. Herring, S. Berretta, S. Heckers and C. Konradi, “Bipolar Disorder Type 1 and Schizophrenia Are Accompanied by Decreased Density of Parvalbuminand Somatostatin-Positive Interneurons in the Parahippocampal Region,” Acta Neuropathologica, Vol. 122, No. 5, 2011, pp. 615-626. doi:10.1007/s00401-011-0881-4
[12] Z. Q. Zhu, D. L. Armstrong, W. J. Hamilton and R. G. Grossman, “Disproportionate Loss of CA4 ParvalbuminImmunoreactive Interneurons in Patients with Ammon’s Horn Sclerosis,” Journal of Neuropathology & Experimental Neurology, Vol. 56, No. 9, 1997, pp. 988-998. doi:10.1097/00005072-199709000-00004
[13] P. Marco, R. G. Sola, S. Ramon y Cajal and J. DeFelipe, “Loss of Inhibitory Synapses on the Soma and Axon Initial Segment of Pyramidal Cells in Human Epileptic Peritumoural Neocortex: Implications for Epilepsy,” Brain Research Bulletin, Vol. 44, No. 1, 1997, pp. 47-66. doi:10.1016/S0361-9230(97)00090-7
[14] J. C. Gant, O. Thibault, E. M. Blalock, J. Yang, A. Bachstetter, J. Kotick, P. E. Schauwecker, K. F. Hauser, G. M. Smith, R. Mervis, Y. Li and G. N. Barnes, “Decreased Number of Interneurons and Increased Seizures in Neuropilin 2 Deficient Mice: Implications for Autism and Epilepsy,” Epilepsia, Vol. 50, No. 4, 2009, pp. 629-645. doi:10.1111/j.1528-1167.2008.01725.x
[15] Y. Hozumi, M. Watanabe, K. Otani and K. Goto, “Diacylglycerol Kinase Beta Promotes Dendritic Outgrowth and Spine Maturation in Developing Hippocampal Neurons,” BMC Neuroscience, Vol. 10, 2009, p. 99.
[16] T. F. Freund and G. Buzsaki, “Interneurons of the Hippocampus,” Hippocampus, Vol. 6, No. 4, 1996, pp. 347-470. doi:10.1002/(SICI)1098-1063(1996)6:4<347::AID-HIPO1>3.0.CO;2-I
[17] T. Klausberger, L. F. Marton, J. O'Neill, J. H. Huck, Y. Dalezios, P. Fuentealba, W. Y. Suen, E. Papp, T. Kaneko, M. Watanabe, J. Csicsvari and P. Somogyi, “Complementary Roles of Cholecystokinin-and Parvalbumin-Expressing GABAergic Neurons in Hippocampal Network Oscillations,” The Journal of Neuroscience, Vol. 25, No. 42, 2005, pp. 9782-9793. doi:10.1523/JNEUROSCI.3269-05.2005
[18] B. Schwaller, I. V. Tetko, P. Tandon, D. C. Silveira, M. Vreugdenhil, T. Henzi, M. C. Potier, M. R. Celio and A. E. Villa, “Parvalbumin Deficiency Affects Network Properties Resulting in Increased Susceptibility to Epileptic Seizures,” Molecular and Cellular Neuroscience, Vol. 25, No. 4, 2004, pp. 650-663. doi:10.1016/j.mcn.2003.12.006
[19] A. Andrioli, L. Alonso-Nanclares, J. I. Arellano and J. De Felipe, “Quantitative Analysis of Parvalbumin-Immunoreactive Cells in the Human Epileptic Hippocampus,” Neuroscience, Vol. 149, No. 1, 2007, pp. 131-143. doi:10.1016/j.neuroscience.2007.07.029
[20] R. Kuruba, B. Hattiangady, V. K. Parihar, B. Shuai and A. K. Shetty, “Differential Susceptibility of Interneurons Expressing Neuropeptide Y or Parvalbumin in the Aged Hippocampus to Acute Seizure Activity,” PLoS One, Vol. 6, No. 9, 2011, Article ID: e24493. doi:10.1371/journal.pone.0024493
[21] H. Pantazopoulos, N. Lange, R. J. Baldessarini and S. Berretta, “Parvalbumin Neurons in the Entorhinal Cortex of Subjects Diagnosed with Bipolar Disorder or Schizophrenia,” Biological Psychiatry, Vol. 61, No. 5, 2007, pp. 640-652. doi:10.1016/j.biopsych.2006.04.026
[22] C. Konradi, E. I. Zimmerman, C. K. Yang, K. M. Lohmann, P. Gresch, H. Pantazopoulos, S. Berretta and S. Heckers, “Hippocampal Interneurons in Bipolar Disorder,” Arch Gen Psychiatry, Vol. 68, No. 4, 2011, pp. 340-350. doi:10.1001/archgenpsychiatry.2010.175
[23] A. Caricasole, E. Bettini, C. Sala, R. Roncarati, N. Kobayashi, F. Caldara, K. Goto and G. C. Terstappen, “Molecular Cloning and Characterization of the Human Diacylglycerol Kinase Beta (DGKbeta) Gene: Alternative Splicing Generates DGKbeta Isotypes with Different Properties,” The Journal of Biological Chemistry, Vol. 277, No. 7, 2002, pp. 4790-4796. doi:10.1074/jbc.M110249200
[24] N. Adachi, M. Oyasu, T. Taniguchi, Y. Yamaguchi, R. Takenaka, Y. Shirai and N. Saito, “Immunocytochemical Localization of a Neuron-Specific Diacylglycerol Kinase Beta and Gamma in the Developing Rat Brain,” Brain Molecular Brain Research, Vol. 139, No. 2, 2005, pp. 288-299. doi:10.1016/j.molbrainres.2005.06.007
[25] L. de Lecea, J. A. del Rio and E. Soriano, “Developmental Expression of Parvalbumin mRNA in the Cerebral Cortex and Hippocampus of the Rat,” Molecular Brain Research, Vol. 32, No. 1, 1995, pp. 1-13. doi:10.1016/0169-328X(95)00056-X

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.