The evaluation of iron content in Alzheimer’s disease by magnetic resonance imaging: Phase and R2* methods


Background: Magnetic resonance imaging (MRI) is the best imaging examination to evaluate abnormal iron deposition in the brain. Although phase of susceptibility weighted imaging (SWI) and R2* values have been used to probe iron deposition in Alzheimer’s disease (AD) brain, no study has exploited both techniques for quantification of iron deposition in AD. Purpose: Use phase and R2* to evaluate iron changes in AD brain. Investigate the correlation of two methods with the severity of cognitive impairment in AD patients.Materials and methods: Twenty-three patients with AD and eighteen normal controls underwent SWI and multi-echo gradient recalled-echo (GRE) imaging on a 3T MR scanner. The phase values from SWI and R2* values calculated from multi-echo GRE imaging of bilateral hippocampus, globus pallidus, putamen, caudate nucleus, thalamus, substantia nigra, red nucleus and dentate nucleus were evaluated. Results: In AD group, the phase values of bilateral hippocampus, globus pallidus, caudate nucleus, substantia nigra and left putamen were significantly lower than the control group. The R2* values of bilateral hippocampus, caudate nucleus, putamen and right globus pallidus were significantly higher than the control group. The phase and R2* values of the left putamen had the most significant correlation with mini-mental state examination (MMSE) scores in AD patients. Conclusion: The SWI phase value and R2* value can be used as effective methods to study the abnormality of iron deposition in AD brain, wherein phase had advantages in small brain structure. Phase value showed a higher correlation coefficient with MMSE scores, moreover the iron deposition of left putamen has a close relationship with the progression of AD.

Share and Cite:

Zhou, B. , Li, S. , He, H. and Feng, X. (2013) The evaluation of iron content in Alzheimer’s disease by magnetic resonance imaging: Phase and R2* methods. Advances in Alzheimer's Disease, 2, 51-59. doi: 10.4236/aad.2013.22007.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] Stankiewicz, J, Panter, S.S., Neema, M., et al. (2007) Iron in chronic brain disorders: Imaging and neurotherapeutic implications. Neurotherapeutics, 4, 371-386. doi:10.1016/j.nurt.2007.05.006
[2] Perry, G., Nunomura, A., Hirai, K., et al. (2000) Oxidative damage in Alzheimer’s disease: The metabolic dimension. International Journal of Developmental Neuroscience, 18, 417-421. doi:10.1016/S0736-5748(00)00006-X
[3] Nunomura, A., Perry, G., Aliev, G., et al. (2001) Oxidative damage is the earliest event in Alzheimer disease. Journal of Neuropathology & Experimental Neurology, 60, 759-767.
[4] Atwood, C.S., Obrenovich, M.E., Liu, T.B., et al. (2003) Amyloid-β: A chameleon walking in two worlds: A review of the trophic and toxic properties of amyloid-β. Brain Research Reviews, 43, 1-16. doi:10.1016/S0165-0173(03)00174-7
[5] Schubert, D. and Chevion, M. (1995) The role of iron in beta amyloid toxicity. Biochemical and Biophysical Research Communications, 216, 702-707. doi:10.1006/bbrc.1995.2678
[6] Siemonsen, S., Finsterbusch, J., Matschke, J., et al. (2008) Age-dependent normal values of T2* and T2' in brain parenchyma. American Journal of Neuroradiology, 29, 950-955. doi:10.3174/ajnr.A0951
[7] Peran, P., Hagberg, G., Luccichenti, G., et al. (2007) Voxel-based analysis of R2* maps in the healthy human brain. Journal of Magnetic Resonance Imaging, 26, 1413-1420. doi:10.1002/jmri.21204
[8] Jensen, J.H., Szulc, K., Hu, C.X., et al. (2009) Magnetic field correlation as a measure of iron-generated magnetic field inhomogeneities in the brain. Magnetic Resonance in Medicine, 61, 481-485. doi:10.1002/mrm.21823
[9] Bartzokis, G., Tishler, T.A., Lu, P.H., et al. (2007) Brain ferritin iron influence age- and gender-related risks of neurodegeneration. Neurobiology of Aging, 28, 414-423. doi:10.1016/j.neurobiolaging.2006.02.005
[10] Yao, B., Li, T.Q., Van Gelderen, P., et al. (2009) Susceptibility contrast in high field MRI of human brain as a function of tissue iron content. Neuroimage, 44, 1259-1266. doi:10.1016/j.neuroimage.2008.10.029
[11] Xu, X.J., Wang, Q.D. and Zhang, M.M. (2008) Age, gender, and hemispheric differences in iron deposition in the human brain: An in vivo MRI study. Neuroimage, 40, 35-42. doi:10.1016/j.neuroimage.2007.11.017
[12] Harder, S.L., Hopp, K.M., Ward, H., et al. (2008) Mineralization of the deep gray matter with age: A retrospective review with susceptibility-weighted MR imaging. American Journal of Neuroradiology, 29, 176-183. doi:10.3174/ajnr.A0770
[13] Haacke, E.M., Cheng, N.Y., House, M.J., et al. (2005) Imaging iron stores in the brain using magnetic resonance imaging. Journal of Magnetic Resonance Imaging, 23, 1-25. doi:10.1016/j.mri.2004.10.001
[14] Pfefferbaum, A., Adalsteinsson, E., Rohlfing, T., et al. (2009) MRI estimates of brain iron concentration in normal aging: Comparison of field-dependent (FDRI) and phase(SWI) methods. NeuroImage, 47, 493-500. doi:10.1016/j.neuroimage.2009.05.006
[15] Ogg, R.J., Langston, J.W., Haacke, E.M., et al. (1999) The correlation between phase shifts in gradient-echo MR images and regional brain iron concentration. Journal of Magnetic Resonance Imaging, 17, 1141-1148. doi:10.1016/S0730-725X(99)00017-X
[16] Haacke, E.M., Xu, Y.B., Cheng, Y.C.N., et al. (2004) Susceptibility weighted imaging (SWI). Magnetic Resonance in Medicine, 52, 612-618. doi:10.1002/mrm.20198
[17] McCrea, R.P., Harder, S.L., Martin, M., et al. (2008) A comparison of rapid-scanning X-ray fluorescence mapping and magnetic resonance imaging to localize brain iron distribution. European Journal of Radiology, 68, S109-S113. doi:10.1016/j.ejrad.2008.04.048
[18] Haacke, E.M., Ayaz, M., Khan, A., et al. (2007) Establishing a baseline phase behavior in magnetic resonance imaging to determine normal vs. abnormal iron content in the brain. Journal of Magnetic Resonance Imaging, 26, 256-264. doi:10.1002/jmri.22987
[19] Chamberlain, R., Reyes, D., Curran, G.L., et al. (2009) Comparison of amyloid plaque contrast generated by T-2-weighted, T-2(star)-weighted, and susceptibility-weighted imaging methods in transgenic mouse models of Alzheimer’s disease. Magnetic Resonance in Medicine, 61, 1158-1164. doi:10.1002/mrm.21951
[20] Meadowcroft, M.D., Connor, J.R., Smith, M.B., et al. (2009) MRI and histological analysis of beta-amyloid plaques in both human Alzheimer’s disease and APP/PS1 transgenic mice. Journal of Magnetic Resonance Imaging, 29, 997-1007. doi:10.1002/jmri.21731
[21] Zhu, W.Z., Zhong, W.D., Wang, W., et al. (2009) Quantitative MR phase-corrected imaging to investigate increased brain iron deposition of patients with Alzheimer disease. Radiology, 253, 497-504. doi:10.1148/radiol.2532082324
[22] McKhann, G., Drachman, D., Folstein, M., et al. (1984) Clinical diagnosis of Alzheimer’s disease: Report of the NINCDS-ADRDA Work Group under the auspices of Department of Health and Human Services Task Force on Alzheimer’s disease. Neurology, 34, 939-944. doi:10.1212/WNL.34.7.939
[23] Berg, D. and Youdim, M.B. (2006) Role of iron in neurodegenerative disorders. Topics in Magnetic Resonance Imaging, 17, 5-17. doi:10.1097/
[24] Good, P.F., Perl, D.P., Bierer, L.M., et al. (1992) Selective accumulation of aluminum and iron in the neurofibrillary tangles of Alzheimer’s disease: A laser microprobe (LAMMA) study. Annals of Neurology, 31, 286-292. doi:10.1002/ana.410310310
[25] Dedman, D.J., Treffry, A., Candy, J.M., et al. (1992) Iron and aluminium in relation to brain ferritin in normal individuals and Alzheimer’s disease and chronic renal-dialysis patients. Biochemical Journal, 287, 509-514.
[26] Connor, J.R., Snyder, B.S., Beard, J.L., et al. (1992) Regional distribution of iron and iron-regulatory proteins in the brain in aging and Alzheimer’s disease. Journal of Neuroscience Research, 31, 327-335. doi:10.1002/jnr.490310214
[27] Loeffler, D.A., Lewitt, P.A., Juneau, P.L., et al. (1996) Increased regional brain concentrations of ceruloplasmin in neurodegenerative disorders. Brain Research, 738, 265-274. doi:10.1016/S0006-8993(96)00782-2
[28] Pappolla, M.A., Omar, R.A., Kim, K.S., et al. (1992) Immunohistochemical evidence of antioxidant stress in Alzheimer’s disease. American Journal of Pathology, 140, 621-628.
[29] Smith, M.A., Zhu, X.W., Tabaton, M., et al. (2010) Increased iron and free radical generation in preclinical Alzheimer disease and mild cognitive impairment. Journal of Alzheimer’s Disease, 19, 363-372.
[30] Bartzokis, G., Tishler, T.A., Shin, I.S., et al. (2004) Brain ferritin iron as a risk factor for age at onset in neurodegenerative diseases. Annals of the New York Academy of Sciences, 1012, 224-236. doi:10.1196/annals.1306.019
[31] Press, D.Z., Casement, M.D., Schenck, J.F., et al. (2004) High field MRI demonstrates increased brain iron in Alzheimer’s disease. Neurobiology of Aging, 25, S378-S379. doi:10.1016/S0197-4580(04)81240-5
[32] Bartzokis, G., Sultzer, D., Cummings, J., et al. (2000) In vivo evaluation of brain iron in Alzheimer Disease using magnetic resonance imaging. Archives of General Psychiatry, 57, 47-53. doi:10.1001/archpsyc.57.1.47
[33] Ding, B., Chen, K.M., Ling, H.W., et al. (2009) Correlation of iron in the hippocampus with MMSE in patients with Alzheimer’s disease. Journal of Magnetic Resonance Imaging, 29, 793-798. doi:10.1002/jmri.21730
[34] House, M.J., Pierre, T.G.S., and McLean, C. (2008) 1.4T study of proton magnetic relaxation rates, iron concentrations, and plaque burden in Alzheimer’s disease and control postmortem brain tissue. Magnetic Resonance in Medicine, 60, 41-52. doi:10.1002/mrm.21586
[35] Haacke, E.M., Miao, Y.W., Liu, M.J., et al. (2010) Correlation of putative iron content as represented by changes in R2* and phase with age in deep gray matter of healthy adults. Journal of Magnetic Resonance Imaging, 32, 561- 576. doi:10.1002/jmri.22293
[36] Duyn, J.H., Van Gelderen, P., Li, T.Q., et al. (2007) High-field MRI of brain cortical substructure based on signal phase. Proceedings of the National Academy of Sciences of the United State of America, 104, 11796-11801. doi:10.1073/pnas.0610821104
[37] Kirsch, W., McAuley, G., Holshouser, B., et al. (2009) Serial susceptibility weighted MRI measures brain iron and microbleeds in dementia. Journal of Alzheimer’s Disease, 17, 599-609.
[38] Steffens, D.C., Tupler, L.A., Ranga, K., et al. (1998) Magnetic resonance imaging signal hypointensity and iron content of putamen nuclei in elderly depressed patients. Journal of Psychiatric Research, 83, 95-103. doi:10.1016/S0925-4927(98)00032-8
[39] Visser, P.J., Verhey, F.R.J., Ponds, R.W.H.M., et al. (2000) Distinction between preclinical Alzheimer’s disease and depression. Journal of the American Geriatrics Society, 48, 479-484.
[40] Sluimer, J.D., Van der Flier, W.M., Karas, G.B., et al. (2009) Accelerating regional atrophy rates in the progression from normal aging to Alzheimer’s disease. European Radiology, 19, 2826-2833. doi:10.1007/s00330-009-1512-5
[41] Scahill, R.I., Schott, J.M., Stevens, J.M., et al. (2002) Mapping the evolution of regional atrophy in Alzheimer’s disease: Unbiased analysis of fluid-registered serial MRI. Proceedings of the National Academy of Sciences of the United State of America, 99, 4703-4707. doi:10.1073/pnas.052587399

Copyright © 2021 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.