Effect of Preheat Temperatures on Mechanical Properties and Polymerization Contraction Stress of Dental Composites


Objectives: The purpose of this study was to investigate the effect of preheat temperatures on polymerization contraction stress and mechanical properties of three resin composites. Methods: Three resin composites (Filtek Supreme XT, GC Kalore, and Gradia Direct X) at room temperature, 37°C, and 60°C were investigated. Stress development and maximum contraction stress of the composites were evaluated. Directly after preheating, samples were light-cured for 40 seconds and the force recorded for 15 minutes. Subsequent calculations were done to account for the system’s compliance and to obtain the shrinkage stress of the composites. In addition, composite discs (5 mm? and1 mmthick) were light-cured for 40 seconds at the preheat temperature. Hardness, elastic modulus, and creep of composites were investigated using a nano-indentation system (UMIS 2000). The results were analyzed using Two-way Analysis of Variance (2-way ANOVA) and Tukey’s Post-Hoc test (α = 0.05). Results: The results indicated that preheating composites to 37°C and 60°C increased the polymerization contraction forces, but did not significantly affect hardness, elastic modulus, and creep behaviour of the materials. Analysis of the contraction force upon allowing for thermal contraction indicated only a minor influence of preheat temperature. Significance: Preheating composites, upon allowing for system thermal contraction, showed a slight increase of the polymerization contraction stress but did not significantly affect the composites’ mechanical properties.

Share and Cite:

P. Didron, A. Ellakwa and M. Swain, "Effect of Preheat Temperatures on Mechanical Properties and Polymerization Contraction Stress of Dental Composites," Materials Sciences and Applications, Vol. 4 No. 6, 2013, pp. 374-385. doi: 10.4236/msa.2013.46048.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] [1] R. M. Carvalho, J. C. Pereira, M. Yoshiyama and D. H. Pashley, “A Review of Polymerization Contraction: The Influence of Stress Development versus Stress Relief,” Operative Dentistry, Vol. 21, 1996, pp. 17-24.
[2] J. L. Ferracane, “Dental Composites: Present Status and Research Directions,” Transactions of the Second International Congress on Dental Materials, Academy of Dental Materials, Honolulu, 1993, pp. 43-53.
[3] J. L. Ferracane and J. C. Mitchem, “Relationship between Composite Contraction Stress and Leakage in Class V Cavities,” American Journal of Dentistry, Vol. 16, No. 4, 2003, pp. 239-243.
[4] A. H. Suliman, D. B. Boyer and R. S. Lakes, “Polymerization Shrinkage of Composite Resins: Comparison with Tooth Deformation,” The Journal of Prosthetic Dentistry, Vol. 71, No. 1, 1994, pp. 7-12. doi:10.1016/0022-3913(94)90247-X
[5] R. R. Braga and J. L. Ferracane, “Alternatives in Polymerization Contraction Stress Management,” Critical Reviews in Oral Biology & Medicine, Vol. 15, No. 3, 2004, pp. 176-184. doi:10.1177/154411130401500306
[6] C. L. Davidson, A. J. De Gee and A. Feilzer, “The Competition between the Composite-Dentin Bond Strength and the Polymerization Contraction Stress,” Journal of Dental Research, Vol. 63, No. 2, 1984, pp. 146-148. doi:10.1177/00220345840630021001
[7] B. Kahler, A. Kotousov and M. V. Swain, “On Design of Dental Resin-Based Composites: A Micromechanical Approach,” Acta Biomaterialia, Vol. 4, No. 1, 2008, pp. 165-172. doi:10.1016/j.actbio.2007.06.011
[8] M. A. Marzouck and J. A. Ross, “Cervical Enamel Crazing Associated with Occluso-Proximal Composite Restorations in Posterior Teeth,” American Journal of Dentistry, Vol. 2, No. 6, 1989, pp. 323-327.
[9] K. F. Wiecz, R. B. Joynt, R. Klockowski and E. L. Davis, “Effects of Incremental versus Bulk Fill Technique on Resistance to Cuspal Fracture of Teeth Restored with Posterior Composites,” The Journal of Prosthetic Dentistry, Vol. 60, No. 3, 1988, pp. 283-287. doi:10.1016/0022-3913(88)90269-7
[10] A. Peutzfeldt, “Resin Composites in Dentistry: The Monomer Systems,” European Journal of Oral Sciences, Vol. 105, No. 2, 1997, pp. 97-116. doi:10.1111/j.1600-0722.1997.tb00188.x
[11] J. S. Rees and P. H. Jacobsen, “The Polymerization Shrinkage of Composite Resins,” Dental Materials, Vol. 5, No. 1, 1989, pp. 41-44. doi:10.1016/0109-5641(89)90092-4
[12] R. Labella, P. Lambrechts, B. Van Meerbeek and G. Vanherle, “Polymerization Shrinkage and Elasticity of Flowable Composites and Filled Adhesives,” Dental Materials, Vol. 15, 1999, pp. 128-137. doi:10.1016/S0109-5641(99)00022-6
[13] S. Rüttermann, S. Krüger, W. H. Raab and R. Janda, “Polymerization Shrinkage and Hygroscopic Expansion of Contemporary Posterior Resin-Based Filling Materials: A Comparative Study,” Journal of Dentistry, Vol. 35, No. 10, 2007, pp. 806-813. doi:10.1016/j.jdent.2007.07.014
[14] A. J. Feilzer, A. J. De Gee and C. L. Davidson, “Setting Stress in Composite Resin in Relation to Configuration of the Restoration,” Journal of Dental Research, Vol. 66, No. 11, 1987, pp. 1636-1639. doi:10.1177/00220345870660110601
[15] D. C. Watts and J. D. Satterthwaite, “Axial ShrinkageStress Depends upon both C-factor and Composite Mass,” Dental Materials, Vol. 24, 2008, pp. 1-8. doi:10.1016/j.dental.2007.08.007
[16] R. Guggenberger and W. Weinmann, “Exploring beyond Methacrylates,” American Journal of Dentistry, Vol. 13, 2000, pp. 82-84.
[17] P. M. Chantler, X. Hu and N. M. Boyd, “An Extension of a Phenomenological Model for Dental Composites,” Dental Materials, Vol. 15, No. 2, 1999, pp. 144-149. doi:10.1016/S0109-5641(99)00024-X
[18] A. J. Feilzer, L. H. Dooren, A. J. De Gee and C. L. Davidson, “Influence of Light Intensity on Polymerization Shrinkage and Integrity of Restoration-Cavity Interface,” European Journal of Oral Sciences, Vol. 103, No. 5, 1995, pp. 322-326. doi:10.1111/j.1600-0722.1995.tb00033.x
[19] Y. Kinomoto, M. Torii, F. Takeshige and S. Ebisu, “Comparison of Polymerization Contraction Stresses between Selfand Light-Curing Composites,” Journal of Dentistry, Vol. 27, No. 5, 1999, pp. 383-389. doi:10.1016/S0300-5712(98)00065-7
[20] J. S. Blalock, R. G. Holmes and F. A. Rueggeberg, “Effect of Temperature on Unpolymerized Composite Resin Film Thickness,” Journal of Prosthetic Dentistry, Vol. 96, No. 6, 2006, pp. 424-432. doi:10.1016/j.prosdent.2006.09.022
[21] M. Trujillo, S. M. Newman and J. W. Stanbury, “Use of Near-IR to Monitor the Influence of External Heating on Dental Composite Photopolymerization,” Dental Materials, Vol. 20, No. 8, 2004, pp. 766-777. doi:10.1016/j.dental.2004.02.003
[22] M. Daronch, F. A. Rueggeberg and M. F. de Goes, “Monomer Conversion of Pre-Heated Composite,” Journal of Dental Research, Vol. 84, No. 7, 2005, pp. 663-667. doi:10.1177/154405910508400716
[23] M. Daronch, F. A. Rueggeberg, M. F. de Goes and R. Giudici, “Polymerization Kinetic of Pre-Heated Composite,” Journal of Dental Research, Vol. 85, No. 1, 2006, pp. 38-43. doi:10.1177/154405910608500106
[24] N. Prasanna, Y. P. Reddy, S. Kavitha and L. L. Narayanan, “Degree of Conversion and Residual Stress of Preheated and Room-Temperature Composites,” Indian Journal of Dental Research, Vol. 18, No. 4, 2007, pp. 173-176. doi:10.4103/0970-9290.35827
[25] A. A. El Hejazi and D. C. Watts, “Creep and Visco-Elastic Recovery of Cured and Secondary-Cured Composites and Resin-Modified Glass-Ionomers,” Dental Materials, Vol. 15, No. 2, 1999, pp. 138-143. doi:10.1016/S0109-5641(99)00023-8
[26] W. C. Oliver and G. M. Pharr, “An Improved Technique for Determining Hardness and Elastic Modulus Using Load and Displacement Sensing Indentation Experiments,” Journal of Materials Research, Vol. 7, No. 6, 1992, pp. 1564-1574. doi:10.1557/JMR.1992.1564
[27] K. Nada and O. El-Mowafy, “Effect of Precuring Warming on Mechanical Properties of Restorative Composites,” International Journal of Dentistry, Vol. 2011, 2011, Article ID: 536212. doi:10.1155/2011/536212
[28] C. A. Munoz, P. R. Bond, J. Sy-Munoz, D. Tan and J. Peterson, “Effect of Pre-Heating on Depth of Cure and Surface Hardness of Light-Polymerized Resin Composites,” American Journal of Dentistry, Vol. 21, No. 4, 2008, pp. 215-222.
[29] R. R. Braga and J. L. Ferracane, “Contraction Stress Related to Degree of Conversion and Reaction Kinetics,” Journal of Dental Research, Vol. 81, No. 2, 2002, pp. 114-118. doi:10.1177/154405910208100206
[30] M. Atai and D. C. Watts, “A New Kinetic Model for the Photopolymerization Shrinkage-Strain of Dental Composites and Resin Monomers,” Dental Materials, Vol. 22, No. 8, 2006, pp. 785-791. doi:10.1016/j.dental.2006.02.009
[31] R. Walter, E. J. Swift, H. Sheikh and J. L. Ferracane, “Effect of Temperature on Composite Resin Shrinkage,” Quintessence International, Vol. 40, 2009, pp. 843-847.
[32] M. Cadenaro, G. Marchesi, F. Antoniolli, C. Davidson, E. Dorigo and L. Breschi, “Flowability of Composites Is No Guarantee for Contraction Stress Reduction,” Dental Materials, Vol. 25, No. 5, 2009, pp. 649-654. doi:10.1016/j.dental.2008.11.010
[33] R. R. Braga, R. Y. Ballaster and J. L. Ferracane, “Factors Involved in the Development of Polymerization Shrinkage Stress in Resin-Composites: A Systematic Review,” Dental Materials, Vol. 21, No. 10, 2005, pp. 962-970. doi:10.1016/j.dental.2005.04.018
[34] M. M. Stavridakis, D. Dietschi and I. Krejci, “Polymerization Shrinkage of Flowable Resin-Based Restorative Materials,” Operative Dentistry, Vol. 30, 2005, pp. 118-128.
[35] H. Y. Chen, J. Manhart, R. Hickel and K. H. Kunzelmann, “Polymerization Contraction Stress in Light-Cured Packable Composite Resins,” Dental Materials, Vol. 17, No. 3, 2001, pp. 253-259. doi:10.1016/S0109-5641(00)00079-8
[36] H. Y. Chen, J. Manhart, K. H. Kunzelmann and R. Hickel, “Polymerization Contraction Stress in Light Cured Compomer Restorative Materials,” Dental Materials, Vol. 19, No. 7, 2003, pp. 597-602. doi:10.1016/S0109-5641(02)00110-0
[37] L. G. Lovell, H. Lu, J. E. Elliott, J. W. Stanbury and C. N. Bowman, “The Effect of Cure Rate on the Mechanical Properties of Dental Resins,” Dental Materials, Vol. 17, No. 6, 2001, pp. 504-511. doi:10.1016/S0109-5641(01)00010-0
[38] W. D. Cook, “Thermal Aspects of the Kinetics of Dimethacrylate Photopolymerization,” Polymer, Vol. 33, No. 10, 1992, pp. 2152-2161. doi:10.1016/0032-3861(92)90882-W
[39] W. D. Cook, “Photopolymerization Kinetics of Oligo (Ethylene Oxide) and Oligo (Methylene) Oxide Dimethacrylates,” Journal of Polymer Science Part A: Polymer Chemistry, Vol. 31, No. 4, 1993, pp. 1053-1067. doi:10.1002/pola.1993.080310428
[40] M. Cadenaro, M. Biasotto, N. Scuor, L. Breschi, C. L. Davidson and R. Di Lenarda, “Assessment of Polymerization Contraction Stress of Three Composite Resins,” Dental Materials, Vol. 24, No. 5, 2008, pp. 681-685. doi:10.1016/j.dental.2007.06.031
[41] M. R. Bouschlicher, M. A. Vargas and D. B. Boyer, “Effect of Composite Type, Light Intensity, Configuration Factor and Laser Polymerization on Polymerization Contraction Forces,” American Journal of Dentistry, Vol. 10, No. 2, 1997, pp. 88-96.
[42] A. Miguel and J. C. de la Macorra, “A Predictive Formula of the Contraction Stress in Restorative and Luting Materials Attending to Free and Adhered Surfaces, Volume and Deformation,” Dental Materials, Vol. 17, No. 3, 2001, pp. 241-246. doi:10.1016/S0109-5641(00)00077-4
[43] C. S. Pfeifer, J. L. Ferracane, R. L. Sakaguchi and R. R. Braga, “Factors Affecting Photo-Polymerization Stress in Dental Composites,” Journal of Dental Research, Vol. 87, No. 11, 2008, pp. 1043-1047. doi:10.1177/154405910808701114
[44] J. Li, H. Li and S. L. Fok, “A Mathematical Analysis of Shrinkage Stress Development in Dental Composite Restorations During Resin Polymerization,” Dental Materials, Vol. 24, No. 7, 2008, pp. 923-931. doi:10.1016/j.dental.2007.11.012
[45] W. C. Wagner, M. N. Ascu, A. L. Neme, J. B. Linger, F. E. Pink and S. Walker, “Effect of Pre-Heating Resin Composite on Restoration Microleakage,” Operative Dentistry, Vol. 33, No. 1, 2008, pp. 72-78. doi:10.2341/07-41
[46] I Elsayad, “Cuspal Movement and Gap Formation in Premolars Restored with Preheated Resin Composite,” Operative Dentistry, Vol. 34, No. 6, 2009, pp. 725-731. doi:10.2341/09-012-L

Copyright © 2023 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.