Share This Article:

Preparation of High Surface Area Mesoporous Ni2xCe1-xO2 (x = 0, 0.05, 0.13, 0.2) and Its Applications in Methane Steam Reforming

Abstract Full-Text HTML Download Download as PDF (Size:1475KB) PP. 42-49
DOI: 10.4236/mrc.2013.22A007    3,378 Downloads   6,455 Views   Citations

ABSTRACT

The present study proposes a novel reverse precipitation procedure, which is different from the conventional precipitation method, for the synthesis of ultra high surface area mesoporous CeO2 at various conditions. Mesoporous Ni2xCe1-xO2 (x = 0.05, 0.13, 0.2) is also synthesized for use in the methane steam reforming reactions. The physicochemical properties of the catalysts and catalytic activity tests for the steam reforming of methane are also investigated. In the present study, the preparation of high surface area mesoporous CeO2 is proposed, which successfully enables control over the surface area. The results showed that the highest surface area of mesoporous ceria reached 695 m2/g. Tests on long-term catalytic activities indicated that Ni0.4Ce0.8O2 exhibited a much greater stability and activity for the steam reforming of methane than the others. Further, the present work also found that the amount of mobile oxygen increased simultaneously as the nickel content in the proposed catalysts due to the synergistic effects of structural nickel species to the oxygen vacant sites at the vicinity of the surface. Using the proposed new method, mesoporous ceria can be utilized more extensively in many ways, including as a three-way catalyst, as an electrolyte of solid oxide fuel cells, in reforming reaction, and in some other practical applications.

Cite this paper

Lin, K. , Tsai, C. and Chang, A. (2013) Preparation of High Surface Area Mesoporous Ni2xCe1-xO2 (x = 0, 0.05, 0.13, 0.2) and Its Applications in Methane Steam Reforming. Modern Research in Catalysis, 2, 42-49. doi: 10.4236/mrc.2013.22A007.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] C. Lamonier, A. Ponchel, A. D’Huysser, L. Jalowiecki-Duhamel, “Studies of the Cerium-Metal-Oxygen-Hydrogen System (Metal = Cu, Ni),” Catalysis Today, Vol. 50, No. 2, 1999, pp. 247-259. doi:10.1016/S0920-5861(98)00507-0
[2] J. G. Li, T. Ikegami, J. H. Lee and T. Mori, “Characterization and Sintering of Nanocrystalline CeO2 Powders Synthesized by a Mimic Alkoxide Method,” Acta Materialia, Vol. 49, No. 3, 2001, pp. 419-426. doi:10.1016/S1359-6454(00)00327-X
[3] S.-D. Kim, I.-S. Hwang, H.-M. Park, J.-K. Rhee, C.-W. Nam, “Chemical Mechanical Polishing of Shallow Trench Isolation Using the Ceria-Based High Selectivity Slurry for Sub-0.18 μm Complementary Metal Oxide Semiconductor Fabrication,” Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures, Vol. 20, No. 3, 2002, pp. 918-923. doi:10.1116/1.1475984
[4] E. P. Murray, T. Tsai and S. A. Barnett, “A Direct-Methane Fuel Cell with a Ceria-Based Anode,” Nature, Vol. 400, No. 6745, 1999, pp. 649-651. doi:10.1038/23220
[5] B. C. H. Steele, “Fuel-Cell Technology: Running on Natural Gas,” Nature, Vol. 400, No. 6745, 1999, pp. 619-621. doi:10.1038/23144
[6] B. Elidrissi, M. Addou, M. Regragui, C. Monty, A. Bougrine and A. Kachouane, “Structural and Optical Properties of CeO2 Thin Films Prepared by Spray Pyrolysis,” Thin Solid Films, Vol. 379, No. 1-2, 2000, pp. 23-27. doi:10.1016/S0040-6090(00)01404-8
[7] S. Yabe and T. Sato, “Cerium Oxide for Sunscreen Cosmetics,” Journal of Solid State Chemistry, Vol. 171, No. 1-2, 2003, pp. 7-11. doi:10.1016/S0022-4596(02)00139-1
[8] R. Li, S. Yabe, M. Yamashita, S. Momose, S. Yoshida, S. Yin and T. Sato, “Synthesis and UV-Shielding Properties of ZnO- and CaO-doped CeO2 via Soft Solution Chemical Process,” Solid State Ionics, Vol. 151, No. 1-4, 2002, pp. 235-241. doi:10.1016/S0167-2738(02)00715-4
[9] S. Yabe, M. Yamashita, S. Momose, K. Tahira, S. Yoshida, R. Li, S. Yin and T. Sato, “Synthesis and UV-Shielding Properties of Metal Oxide Doped Ceria via Soft Solution Chemical Processes,” International Journal of Inorganic Materials, Vol. 3, No. 7, 2001, pp. 1003-1008. doi:10.1016/S1466-6049(01)00198-2
[10] M. Yamashita, K. Kameyama, S. Yabe, S. Yoshida, Y. Fujishiro, T. Kawai and T. Sato, “Synthesis and Micro-Structure of Calcia Doped Ceria as UV Filters,” Journal of Materials Science, Vol. 37, No. 4, 2002, pp. 683-687. doi:10.1023/A:1013819310041
[11] D. Gamarra, C. Belver, M. Fernandez-Garcia and A. Martinez-Arias, “Selective CO Oxidation in Excess H2 over Copper-Ceria Catalysts: Identification of Active Entities/ Species,” Journal of the American Chemical Society, Vol. 129, No. 40, 2007, pp. 12064-12065. doi:10.1021/ja073926g
[12] N. Laosiripojana, D. Chadwick and S. Assabumrungrat, “Effect of High Surface Area CeO2 and Ce-ZrO2 Supports over Ni Catalyst on CH4 Reforming with H2O in the Presence of O2, H2, and CO2,” Chemical Engineering Journal, Vol. 138, No. 1-3, 2008, pp. 264-273. doi:10.1016/j.cej.2007.05.035
[13] N. Laosiripojana and S. Assabumrungrat, “Catalytic Dry Reforming of Methane over High Surface Area Ceria,” Applied Catalysis B: Environmental, Vol. 60, No. 1-2, 2005, pp. 107-116. doi:10.1016/j.apcatb.2005.03.001
[14] G. Wrobel, C. Lamonier, A. Bennani, A. D’Huysser and A. Aboukais, “Effect of Incorporation of Copper or Nickel on Hydrogen Storage in Ceria,” Journal of the Chemical Society, Faraday Transactions, Vol. 92, No. 11, 1996, pp. 2001-2009. doi:10.1039/ft9969202001
[15] D. Terribile, A. Trovarelli, J. Llorca, C. de Leitenburg and G. Dolcetti, “The Synthesis and Characterization of Mesoporous High-Surface Area Ceria Prepared Using a Hybrid Organic/Inorganic Route,” Journal of Catalysis, Vol. 178, No. 1, 1998, pp. 299-308. doi:10.1006/jcat.1998.2152
[16] S. A. Hassanzadeh-Tabrizi, M. Mazaheri, M. Aminzare and S. K. Sadrnezhaad, “Reverse Precipitation Synthesis and Characterization of CeO2 Nanopowder,” Journal of Alloys and Compounds, Vol. 491, No. 1-2, 2010, pp. 499-502. doi:10.1016/j.jallcom.2009.10.243
[17] T. Hayakawa, S. Suzuki, J. Nakamura, T. Uchijima, S. Hamakawa, K. Suzuki, T. Shishido and K. Takehira, “CO2 Reforming of CH4 over Ni/Perovskite Catalysts Prepared by Solid Phase Crystallization Method,” Applied Catalysis A: General, Vol. 183, No. 2, 1999, pp. 273-285. doi:10.1016/S0926-860X(99)00071-X
[18] Z. Miroslaw, “Preparation and Characterization of Ceria Nanoparticles by Microwave-Assisted Solvothermal Process,” Journal of Alloys and Compounds, Vol. 454, No. 1-2, 2008, pp. 347-351. doi:10.1016/j.jallcom.2006.12.078
[19] C. T. Kresge, M. E. Leonowicz, W. J. Roth, J. C. Vartuli and J. S. Beck, “Ordered Mesoporous Molecular Sieves Synthesized by a Liquid-Crystal Template Mechanism,” Nature, Vol. 359, No. 6397, 1992, pp. 710-712. doi:10.1038/359710a0
[20] Y.-S. Seo, Y.-S. Jung, W.-L. Yoon, I.-G. Jang and T.-W. Lee, “The Effect of Ni Content on a Highly Active Ni-Al2O3 Catalyst Prepared by the Homogeneous Precipitation Method,” International Journal of Hydrogen Energy, Vol. 36, No. 1, 2011, pp. 94-102. doi:10.1016/j.ijhydene.2010.09.082
[21] K.-H. Lin, H.-F Chang and A. C. C. Chang, “Biogas Reforming for Hydrogen Production over Mesoporous Ni2xCe1-xO2 Catalysts,” International Journal of Hydrogen Energy, Vol. 37, No. 20, 2012, pp. 15696-15703. doi:10.1016/j.ijhydene.2012.03.130

  
comments powered by Disqus

Copyright © 2020 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.