Share This Article:

An Environment Friendly, Low-Cost Extraction Process of Phenolic Compounds from Grape Byproducts. Optimization by Multi-Response Surface Methodology

Abstract Full-Text HTML Download Download as PDF (Size:941KB) PP. 650-659
DOI: 10.4236/fns.2013.46084    3,464 Downloads   5,374 Views   Citations

ABSTRACT

Due to their beneficial effects on human health, phenolic compounds are increasingly attracting the attention of scientists and researchers all over the world. The main interest is in the extraction process of those natural plant-originated compounds from fruits, vegetables and plant wastes, namely grape wastes, in which phenolic compounds are the most abundant secondary metabolites. This waste exploitation not only re-assimilates those byproducts into the food cycle, but also avoids major environmental problems. Herein, the optimization of the phenolic compounds concentration and free radical scavenging activity from Cabernet Sauvignon grape byproducts was conducted, using multi-response surface methodology. A conventional solid-liquid extraction process was performed with pure water as a solvent to study the effects of both time and temperature on the procedure. The maximal phenolic compounds concentration (878.9 mg/L) was reached at 47after 30 hours while the optimal free radical scavenging activity (41.15%) was obtained at 30after 20 hours. A multi-response surface methodology compromised between the quantity and the quality of the extracted phenolics, and the parameters maximizing both responses were obtained at 37 and 28 hours. This low-cost and energy saving process provides an excellent tool for further industrial applications.

Cite this paper

H. N. Rajha, N. Darra, E. Vorobiev, N. Louka and R. Maroun, "An Environment Friendly, Low-Cost Extraction Process of Phenolic Compounds from Grape Byproducts. Optimization by Multi-Response Surface Methodology," Food and Nutrition Sciences, Vol. 4 No. 6, 2013, pp. 650-659. doi: 10.4236/fns.2013.46084.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] P. Rondeau, F. Gambier, F. Jolibert and N. Brosse, “Compositions and Chemical Variability of Grape Pomaces from French Vineyard,” Industrial Crops and Products, Vol. 43, 2013, pp. 251-254. doi:10.1016/j.indcrop.2012.06.053
[2] “The Lebanese Observatory for Agricultural Development,” 2001. http://www.loadleb.org/files/agricultural-foodChain/filiere-vegetale/rapport-synthese/RS-Filiere%20Viticoles.pdf
[3] A. J. Parr and G. P. Bolwell. “Phenols in the Plant and in Man. The Potential for Possible Nutritional Enhancement of the Diet by Modifying the Phenols Content or Profile,” Journal of the Science of Food and Agriculture, Vol. 80, No. 7, 2000, pp. 985-1012. doi:10.1002/(SICI)1097-0010(20000515)80:7<985::AID-JSFA572>3.0.CO;2-7
[4] D. Del Rio, L. G. Costa, M. E. J. Lean and A. Crozier, “Polyphenols and Health: What Compounds Are Involved?” Nutrition, Metabolism and Cardiovascular Diseases, Vol. 20, No. 1, 2010, pp. 1-6. doi:10.1016/j.numecd.2009.05.015
[5] O. Palomino, M. P. Gómez-Serranillos, K. Slowing, E. Carretero and A.Villar, “Study of Polyphenols in Grape Berries by Reversed-Phase High-Performance Liquid Chromatography,” Journal of Chromatography A, Vol. 870, No. 1-2, 2000, pp. 449-451. doi:10.1016/S0021-9673(99)01225-X
[6] M. Bourzeix, E. Weiland and N. Heredia, “A Study of Catechins and Procyanidins of Grape Clusters, the Wine and Other By-product of the Wine,” Bulletin de l’Organisation Internationale de la vigne et du Vin, Vol. 59, 1986, pp. 669-670.
[7] C. Perret, “Analyse des Tanins Inhibiteurs de la Stilbène Oxydase Produite par Botrytis cinerea,” Ph.D. Thesis, Université de Neuchatel, Faculté des Sciences, 2001.
[8] M. Naczk and F. Shahidi, “Phenolics in Cereals, Fruits and Vegetables: Occurrence, Extraction and Analysis,” Journal of Pharmaceutical and Biomedical Analysis, Vol. 41, No. 5, 2006, pp. 1523-1542. doi:10.1016/j.jpba.2006.04.002
[9] E. Q. Xia, G. F. Deng, Y. J. Guo and H. B. Li, “Biological Activities of Polyphenols from Grapes,” International Journal of Molecular Sciences, Vol. 11, No. 2, 2010, pp. 622-646. doi:10.3390/ijms11020622
[10] J. Khalil, “Pulsed Electric Field (P.E.F.) and Pectinase for the Extraction of Polyphenols from Grape Pomace and Peel,” Dissertations & Thesis in Food Science and Technology, Paper 16, 2011.
[11] M. H. Gordon, “Dietary Antioxidants in Disease Prevention,” Natural Product Reports, Vol. 13, No. 4, 1996, pp. 265-273. doi:10.1039/np9961300265
[12] M. S. Brewer, “Natural Antioxidants: Sources, Compounds, Mechanism of Action, and Potential Applications,” Comprehensive Reviews in Food Science and Food Safety, Vol. 10, No. 4, 2011, pp. 221-247. doi:10.1111/j.1541-4337.2011.00156.x
[13] D. Procházková, I. Bousová and N. Wilhelmová, “Antioxidant and Prooxidant Properties of Flavonoids,” Fitoterapia, Vol. 82, No. 4, 2011, pp. 513-523. doi:10.1016/j.fitote.2011.01.018
[14] A. Ojeil, N. El Darra, Y. El Hajj, P. Bou Mouncef, T. J. Rizk and R. G. Maroun, “Identification et Caractérisation de Composés Phénoliques Extraits du Raisin Chateau KSARA,” Lebanese Science Journal, Vol. 11, No. 2, 2010, pp. 117-131.
[15] M. L. Silva, A. C. Macedo and F. X. Malcata, “Review: Steam Distilled Spirits from Fermented Grape Pomace,” Food Science and Technology International, Vol. 6, No. 4, 2000, pp. 285-300. doi:10.1177/108201320000600403
[16] C. Nurgel and A. Canbas, “Production of Tartaric Acid from Pomace of some Anatolian Grape Cultivars,” American Journal of Enology and Viticulture, Vol. 49, No. 1, 1998, pp. 95-99.
[17] Y. D. Hang and E. E. Woodams, “Grape Pomace: A Novel Substrate for Microbial Production of Citric Acid,” Biotechnology Letters, Vol. 7, No. 1, 1985, pp. 253-254. doi:10.1007/BF01042372
[18] M. Stredansky and E. Conti, “Xanthan Production by Solid State Fermentation,” Process Biochemistry, Vol. 34, No. 6-7, 1999, pp. 581-587. doi:10.1016/S0032-9592(98)00131-9
[19] N. Girdhar and A. Satyanarayana, “Grape Waste as a Source of Tartrates,” Indian Food Packer, Vol. 54, 2000, pp. 59-61.
[20] G. Spigno and D. M. De Faveri, “Antioxidants from Grape Stalks and Marc: Influence of Extraction Procedure on Yield, Purity and Antioxidant Power of the Extracts,” Journal of Food Engineering, Vol. 78, No. 3, 2007, pp. 793801. doi:10.1016/j.jfoodeng.2005.11.020
[21] N. Boussetta, N. Lebovka, E. Vorobiev, H. Adenier, C. Bedel-Cloutour and J. L. Lanoisellé, “Electrically Assisted Extraction of Soluble Matter from Chardonnay Grape Skins for Polyphenol Recovery,” Journal of Agriculture and Food Chemistry, Vol. 57, No. 4, 2009, pp. 14911497. doi:10.1021/jf802579x
[22] Y. Yilmaz and R. T. Toledo, “Oxygen Radical Absorbance Capacities of Grape/Wine Industry Byproducts and Effect of Solvent Type on Extraction of Grape Seed Polyphenols,” Journal of Food Composition and Analysis, Vol. 19, No. 1, 2006, pp. 41-48. doi:10.1016/j.jfca.2004.10.009
[23] N. Boussetta, J. L. Lanoisellé, C. Bedel-Cloutour and E. Vorobiev, “Extraction of Soluble Matter from Grape Pomace by High Voltage Electrical Discharges for Polyphenol Recovery: Effect of Sulphur Dioxide and Thermal Treatments,” Journal of Food Engineering, Vol. 95, No. 1, 2009, pp. 192-198. doi:10.1016/j.jfoodeng.2009.04.030
[24] N. Boussetta, “Intensification de l’Exraction des Polyphénols par Electrotechnologies pour la Valorisation des Marcs de Champagne,” Ph.D. Thesis, Université de Technologie de Compiègne, Compiègne, 2010.
[25] G. Spigno, L. Tramelli and D. M. De Faveri, “Effects of Extraction Time, Temperature and Solvent on Concentration and Antioxidant Activity of Grape Marc Phenolics,” Journal of Food Engineering, Vol. 81, No. 1, 2007, pp. 200-208. doi:10.1016/j.jfoodeng.2006.10.021
[26] K. Slinkard and V. L. Singleton, “Total Phenol Analysis: Automation and Comparison with Manual Methods,” American Journal of Enology and Viticulture, Vol. 28, No. 1, 1977, pp. 49-55.
[27] M. A. Gyamfi, M. Yonamine and Y. Aniya, “Free-Radical Scavenging Action of Medicinal Herbs from Ghana: Thonningia Sanguine on Experimentally-Induced Liver Injuries,” General Pharmacology: The Vascular System, Vol. 32, No. 6, 1999, pp. 661-667. doi:10.1016/S0306-3623(98)00238-9
[28] S. Kallithraka, A. A.-A. Mohdaly, D. P. Makris and P. Kefalas, “Determination of Major Anthocyanin Pigments in Hellenic native Grape Varieties (Vitis vinifera sp.): Association with Antiradical Activity,” Journal of Food Composition and Analysis, Vol. 18, No. 5, 2005, pp. 375386. doi:10.1016/j.jfca.2004.02.010
[29] F. Bonilla, M. Mayen, J. Merida and M. Medina, “Extraction of Phenolic Compounds from Red Grape Marc for Use as Food Lipid Antioxidants,” Food Chemistry, Vol. 66, No. 2, 1999, pp. 209-215. doi:10.1016/S0308-8146(99)00046-1
[30] R. H. Myers and D. C. Montgomery, “Response Surface Methodology: Process and Product Optimization Using Designed Experiments,” 2nd Edition, Wiley, New York, 2002.
[31] M. Rubilar, M. Pinelo, D. Franco, J. Sineiro and M. J. Núnez, “Agroindustrial Residues as a Source of Antioxidants. Residuos Agroindustriales Como Fuente de Antioxidantes,” Afinidad, Vol. 60, No. 504, 2003, pp. 153160.
[32] Y. Xing and P. J. White, “Identification and Function of Antioxidants from Oat Groats and Hulls,” Journal of the American Oil Chemists’ Society, Vol. 74, No. 3, 1997, pp. 303-307. doi:10.1007/s11746-997-0141-x
[33] K. Robards, M. Antolovich, P. Prenzler and D. Ryan, “Sample Preparation in the Determination of Phenolic Compounds in Fruits,” Analyst, Vol. 125, No. 5, 2000, pp. 9891009. doi:10.1039/b000080i
[34] A. Escarpa and M. C. Gonzáles, “Approach to the Content of Total Extractable Phenolic Compounds from Different Food Samples by Comparison of Chromatographic and Spectrophotometric Methods,” Analytica Chimica Acta, Vol. 427, No. 1, 2001, pp. 119-127. doi:10.1016/S0003-2670(00)01188-0
[35] M. Pinelo, M. Rubilar, M. Jerez, J. Sineiro and M. J. Nez, “Effect of Solvent, Temperature, and Solvent-to-Solid Ratio on the Total Phenolic Content and Antiradical Activity of Extracts from Different Components of Grape Pomace,” Journal of Agriculture and Food Chemistry, Vol. 53, No. 6, 2005. pp. 2111-2117. doi:10.1021/jf0488110
[36] B. Lapornik, M. Prosek and A. G. Wondra, “Comparison of Extracts Prepared from Plant By-products Using Different Solvents and Extraction Time,” Journal of Food Engineering, Vol. 71, No. 2, 2005, pp. 214-222. doi:10.1016/j.jfoodeng.2004.10.036
[37] N. El Darra, J. Tannous, P. BouMouncef, J. Palge, J. Yaghi, E. Vorobiev, N. Louka and R. G. Maroun, “A Comparative Study on Antiradical and Antimicrobial Properties of Red Grapes Extracts Obtained from Different Vitis vinifera Varieties,” Food and Nutrition Sciences, Vol. 3, No. 10, 2012, pp. 1420-1432. doi:10.4236/fns.2012.310186
[38] R. S. Jackson, “Wine Sciences,” Academic Press, New York, 1994. doi:10.1016/S0260-8774(02)00497-1
[39] J. E. Cacace and G. Mazza, “Mass Transfer Process During Extraction of Phenolic Compounds from Milled Berries,” Journal of Food Engineering, Vol. 59, No. 4, 2003, pp. 379-389.
[40] H. G. Schwartzberg and R. Y. Chao, “Solute Diffusivities in Leaching Processes,” Food Technology, Vol. 36, No. 2, 1982, pp. 73-86.
[41] M. Wettasinghe and F. Shahidi, “Evening Primrose Meal: A Source of Natural Antioxidants and Scavenger of Hydrogen Peroxide and Oxygen-Derived Free Radicals,” Journal of Agriculture and Food Chemistry, Vol. 47, No. 5, 1999, pp. 1801-1812. doi:10.1021/jf9810416
[42] D. C. Montgomery, “Design and Analysis of Experiments,” 5th Edition, Wiley, New York, 2001.
[43] B. E. Richter, “Extraction of Hydrocarbon Contamination from Soils Using Accelerated Solvent Extraction,” Journal of Chromatography A, Vol. 874, No. 2, 2000, pp. 217-224.
[44] L. Ramos, E. M. Kristenson and U. A. T. Brinkman, “Current Use of Pressurised Liquid Extraction and Subcritical Water Extraction in Environmental Analysis,” Journal of Chromatography A, Vol. 975, No. 1, 2002, pp. 3-29. doi:10.1016/S0021-9673(02)01336-5
[45] K. Zhou and L. Yu, “Effects of Extraction Solvent on Wheat Bran Antioxidant Activity Estimation,” LWTFood Science and Technology, Vol. 37, No. 7, 2004, pp. 717-721. doi:10.1016/j.lwt.2004.02.008
[46] Q. Liu and H. Yao, “Antioxidant Activities of Barley Seeds Extracts,” Food Chemistry, Vol. 102, No. 3, 2007, pp.732-737. doi:10.1016/j.foodchem.2006.06.051
[47] E. Revilla, J. M. Ryan and G. Martin-Ortega, “Comparison of Several Procedures Used for the Extraction of Anthocyanins from Red Grapes,” Journal of Agriculture and Food Chemistry, Vol. 46, No. 11, 1998, pp. 4592-4597. doi:10.1021/jf9804692
[48] Z. Y. Ju and L. R. Howard, “Effects of Solvent and Temperature on Pressurized Liquid Extraction of Anthocyanins and Total Phenolics from Dried Red Grape Skin,” Journal of Agriculture and Food Chemistry, Vol. 51, No. 18, 2003, pp. 5207-5213. doi:10.1021/jf0302106
[49] R. P. Metivier, F. J. Francis and F. M. Clydesdale, “Solvent Extraction of Anthocyanins from Wine Pomace,” Journal of Food Science, Vol. 45, No. 4, 2006, pp. 10991100. doi:10.1111/j.1365-2621.1980.tb07534.x
[50] Y. El Hajj, N. Louka, C. Nguyen and R. G. Maroun, “Low Cost Process for Phenolic Compounds Extraction from Cabernet Sauvignon Grapes (Vitis vinifera L. cv. Cabernet Sauvignon). Optimization by Response Surface Methodology,” Food and Nutrition Sciences, Vol. 3, No. 1, 2012, pp. 89-103. doi:10.4236/fns.2012.31014
[51] L. Gao and G. Mazza, “Extraction of Anthocyanin Pigments from Purple Sunflower Hulls,” Journal of Food Science, Vol. 61, No. 3, 1996, pp. 600-603. doi:10.1111/j.1365-2621.1996.tb13167.x
[52] F. F. Liu, C. Y. W. Ang and D. Springer, “Optimization of Extraction Conditions for Active Components in Hypericum perforatum Using Response Surface Methodology,” Journal of Agriculture and Food Chemistry, Vol. 48, No. 8, 2000, pp. 3364-3371. doi:10.1021/jf991086m
[53] N. Turker and F. Erdogdu, “ Effects of pH and Temperature of Extraction Medium on Effective Diffusion Coefficient of Anthocyanin Pigments of Black Carrot (Daucuscarota var. L.),” Journal of Food Engineering, Vol. 76, No. 4, 2006, pp. 579-583. doi:10.1016/j.jfoodeng.2005.06.005
[54] T. Vatai, M. Skerget and Z. Knez, “Extraction of Phenolic Compounds from Elder Berry and Different Grape Marc Varieties Using Organic Solvents and/or Supercritical Carbon Dioxide,” Journal of Food Engineering, Vol. 90, No. 2, 2009, pp. 246-254. doi:10.1016/j.jfoodeng.2008.06.028

  
comments powered by Disqus

Copyright © 2020 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.