Proteomics: A Successful Approach to Understand the Molecular Mechanism of Plant-Pathogen Interaction

Abstract

In recent years, proteomics has played a key role in identifying changes in protein levels in plant hosts upon infection by pathogenic organisms and in characterizing cellular and extracellular virulence and pathogenicity factors produced by pathogens. Proteomics offers a constantly evolving set of novel techniques to study all aspects of protein structure and function. Proteomics aims to find out the identity and amount of each and every protein present in a cell and actual function mediating specific cellular processes. Structural proteomics elucidates the development and application of experimental approaches to define the primary, secondary and tertiary structures of proteins, while functional proteomics refers to the development and application of global (proteome wide or system-wide) experimental approaches to assess protein function. A detail understanding of plant defense response using successful combination of proteomic techniques and other high throughput techniques of cell biology, biochemistry as well as genomics is needed for practical application to secure and stabilize yield of many crop plants. This review starts with a brief introduction to gel- and non gel-based proteomic techniques followed by the basics of plant-pathogen interaction, the use of proteomics in recent pasts to decipher the mysteries of plant-pathogen interaction, and ends with the future prospects of this technology.

Share and Cite:

T. Lodha, P. Hembram and N. Basak, "Proteomics: A Successful Approach to Understand the Molecular Mechanism of Plant-Pathogen Interaction," American Journal of Plant Sciences, Vol. 4 No. 6, 2013, pp. 1212-1226. doi: 10.4236/ajps.2013.46149.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] P. N. Dodds and J. P. Rathjen, “Plant Immunity: Towards an Integrated View of Plant-Pathogen Interactions,” Nature Reviews Genetics, Vol. 11, No. 8, 2010, pp. 539-548. doi:10.1038/nrg2812
[2] P. J. De Wit, “How Plants Recognize Pathogens and Defend Themselves,” Cellular and Molecular Life Sciences, Vol. 64, No. 21, 2007, pp. 2726-2732. doi:10.1007/s00018-007-7284-7
[3] T. D. Lodha and J. Basak, “Plant-Pathogen Interaction: What Microarray Tells about It?” Molecular Biotechnoogy, Vol. 50, No. 1, 2012, pp. 87-97.
[4] J. L. Dangl and J. D. G. Jones, “Plant Pathogens and Integrated Defense Responses to Infection,” Nature, Vol. 411, No. 6839, 2001, pp. 826-833. doi:10.1038/35081161
[5] C. Zipfel, “Pattern-Recognition Receptors in Plant Innate Immunity,” Current Opinion in Immunology, Vol. 20, No. 1, 2008, pp. 10-16. doi:10.1016/j.coi.2007.11.003
[6] M. R. Wilkins, J. C. Scnchez, A. A. Gooley, R. D. Appel, I. H. Smith, D. F. Hochstrasser and K. L. Williams, “Progress with Proteome Projects: Why All Proteins Expressed by a Genome Should Be Identified and How to Do It,” Biotechnology & Genetic Engineering Reviews, Vol. 13, No. 1, 1995, pp. 19-50. doi:10.1080/02648725.1996.10647923
[7] N. V. K. Nat, S. Srivastava, W. Yajima and N. Sharma, “Application of Proteomics to Investigate Plant-Pathogen Interactions,” Current Proteomics, Vol. 4, No. 1, 2007, pp. 28-43. doi:10.2174/157016407781387357
[8] S. D. Patterson and R. H. Aebersold, “Proteomics: The First Decade and Beyond,” Nature Genetics, Vol. 33, No. 3, 2003, pp. 311-321. doi:10.1038/ng1106
[9] H. Duley and A. Grover, “Current Initiatives in Proteomics Research: The Plant Perspective,” Current Science, Vol. 80, No. 2, 2001, pp. 262-269.
[10] S. P. Gygi, B. Rist, S. A. Gerber, F. Turecek, M. H. Gelb and R. Aebersold, “Quantitative Analysis of Complex Protein Mixtures Using Isotope-Coded Affinity Tags,” Nature Biotechnology, Vol. 17, No. 10, 1999, pp. 994-999. doi:10.1038/13690
[11] O. K. Park, “Proteomic Study in Plants,” Journal of Biochemistry and Molecular Biology, Vol. 37, No. 1, 2004, pp. 133-138. doi:10.5483/BMBRep.2004.37.1.133
[12] G. Thurston, S. Regan, C. Rampitsch and T. Xing, “Proteomic and Phosphoproteomic Approaches to Understand Plant-Pathogen Interactions,” Physiological and Molecular Plant Pathology, Vol. 66, No. 1, 2005, pp. 3-11. doi:10.1016/j.pmpp.2005.03.004
[13] J. Klose, “Protein Mapping by Combined Isoelectric Focusing and Electrophoresis of Mouse Tissues. A Novel Approach to Testing for Induced Point Mutation in Mammals,” Human Genetics, Vol. 26, No. 3, 1975, pp. 231-243.
[14] P. H. O’Farrell, “High Resolution Two Dimensional Electrophoresis of Proteins,” Journal of Biological Chemistry, Vol. 250, No. 10, 1975, pp. 4007-4021.
[15] A. Gorg, W. Weiss and M. J. Dunn, “Current Two-Dimensional Electrophoresis Technology for Proteomics,” Proteomics, Vol. 4, No. 12, 2004, pp. 3665-3685. doi:10.1002/pmic.200401031
[16] P. G. Righetti, A. Castagna, F. Antonucci, C. Piubelli, D. Cecconi, N. C. Campostrini, P. Antonioli, H. Astner, “Critical Survey of Quantitative Proteomics in Two-Dimensional Electrophoretic Approaches,” Journal of Chromatography A, Vol. 1051, No. 1, 2004, pp. 3-17. doi:10.1016/j.chroma.2004.05.106
[17] H. Zhu, M. Bilgin and M. Snyder, “Proteomics,” Annual Review of Biochemistry, Vol. 72, No. 1, 2003, pp. 783-812. doi:10.1146/annurev.biochem.72.121801.161511
[18] J. K. C. Rose, S. Bashir, J. J. Giovannoni, M. M. Jahn and R. S. Saravanan, “Tackling the Plant Proteome: Practical Approaches, Hurdles and Experimental Tools,” Plant Journal, Vol. 39, No. 5, 2004, pp. 715-733. doi:10.1111/j.1365-313X.2004.02182.x
[19] B. Wittmann-Liebold, H. R. Graack and T. Pohl, “Two-Dimensional Gel Electrophoresis as Tool for Proteomics Studies in Combination with Protein Identification by Mass Spectrometry,” Proteomics, Vol. 6, No. 17, 2006, pp. 4688-4703. doi:10.1002/pmic.200500874
[20] M. Unlu, M. E. Morgan and J. S. Minden, “Difference Gel Electrophoresis: A Single Gel Method for Detecting Changes in Protein Extracts,” Electrophoresis, Vol. 18, No. 11, 1997, pp. 2071-2077. doi:10.1002/elps.1150181133
[21] R. Marouga, S. David and E. Hawkins, “The Development of the DIGE System: 2D Fluorescence Difference Gel Analysis Technology,” Analytical and Bioanalytical Chemistry, Vol. 382, No. 3, 2005, pp. 669-678. doi:10.1007/s00216-005-3126-3
[22] G. Van den Bergh and L. Arckens, “Recent Advances in 2D Electrophoresis: An Array of Possibilities,” Expert Review of Proteomics, Vol. 2, No. 2, 2005, pp. 243-252. doi:10.1586/14789450.2.2.243
[23] G. Zhou, H. Li and D. Camp De, “2D Differential In-Gel Electrophoresis for the Identification of Esophageal Scans Cell Cancer-Specific Protein Markers,” Molecular & Cellular Proteomics, Vol. 1, No. 2, 2005, pp. 117-124. doi:10.1074/mcp.M100015-MCP200
[24] J. P. Lambert, M. Ethier, J. C. Smith and D. Figeys, “Proteomics from Gel Based to Gel Free,” Analytical Chemistry, Vol. 77, No. 12, 2005, pp. 3771-3787. doi:10.1021/ac050586d
[25] G. Baggerman, E. Vierstraete, A. De Loof and L. Schoofs, “Gel Based Versusgel-Free Proteomics: A Review,” Combinatorial Chemistry & High Throughput Screening, Vol. 8, No. 8, 2005, pp. 669-677. doi:10.2174/138620705774962490
[26] M. R. Flory, A. R. Carson, E. G. Muller and R. Aebersold, “An SMC-Domain Protein in Fission Yeast Links Telomeres to the Meiotic Centrosome,” Molecular Cell, Vol. 16, No. 4, 2004, pp. 619-630. doi:10.1016/j.molcel.2004.10.027
[27] P. L. Ross, Y. N. Huang, J. N. Marchese, B. Williamson, K. Parker, S. Hattan, N. Khainovski and S. Pillai, “Multiplexed Protein Quantitation in Saccharomyces cerevisiae Using Amine-Reactive Isobaric Tagging Reagents,” Molecular & Cellular Proteomics, Vol. 3, No. 12, 2004, pp. 1154-1169. doi:10.1074/mcp.M400129-MCP200
[28] K. Agarwal, L. H. Choe and K. H. Lee, “Shotgun Proteomics Using the iTRAQ Isobaric Tags,” Briefings in Functional Genomics and Proteomics, Vol. 5, No. 2, 2006, pp. 112-120. doi:10.1093/bfgp/ell018
[29] L. R. Zieske, “A Perspective on the Use of iTRAQ Reagent Technology for Protein Complex and Profiling Studies,” Journal of Experimental Botany, Vol. 57, No. 7, 2006, pp. 1501-1508. doi:10.1093/jxb/erj168
[30] T. C. Lund, L. B. Anderson, V. McCullar, L. Higgins, G. H. Yun, B. Grzywacz, M. R. Verneris and J. S. Miller, “iTRAQ Is a Useful Method to Screen for Membrane-Bound Proteins Differentially Expressed in Human Natural Killer Cell Types,” Journal of Proteome Research, Vol. 6, No. 2, 2007, pp. 644-653. doi:10.1021/pr0603912
[31] H. J. Issaq, K. C. Chan, G. M. Janini, T. P. Conrads and T. D. Veenstra, “Multidimensional Separation of Peptides for Effective Proteomic Analysis,” Journal of Chromatography B Analytical Technologies in the Biomedical and Life Sciences, Vol. 817, No. 1, 2005, pp. 35-47. doi:10.1016/j.jchromb.2004.07.042
[32] M. P. Washburn, D. Wolters and J. R. Yates, “Large-Scale Analysis of the Yeast Proteome by Multidimensional Protein Identification Technology,” Nature Biotechnology, Vol. 19, No. 3, 2001, pp. 242-247. doi:10.1038/85686
[33] I. I. I. Yates, J. R. A. Gilchrist, K. E. Howell and J. J. Bergeron, “Proteomics of Organelles and Large Cellular Structures,” Nature Reviews, Vol. 6, No. 9, 2005, pp. 702-714. doi:10.1038/nrm1711
[34] A. E. Speers and C. C. Wu, “Proteomics of Integral Membrane Proteins-Theory and Application,” Chemical Reviews, Vol. 107, No. 8, 2007, pp. 3687-3714. doi:10.1021/cr068286z
[35] G. T. Cantin, J. D. Venable, D. Cociorva and J. R. Yates III, “Quantitative Phosphoproteomic Analysis of the Tumor Necrosis Factor Pathway,” Journal of Proteome Research, Vol. 5, No. 1, 2006, pp. 127-134. doi:10.1021/pr050270m
[36] C .O. Anderson, “Mass Spectrometric Studies on Amino Acid and Peptide Derivatives,” Acta Chemica Scandinavica, Vol. 12, No. 0353, 1958, p. 1353.
[37] W. Zhu, J. W. Smith and C. M. Huang, “Mass Spectrometry-Based Label-Free Quantitative Proteomics,” Journal of Biomedicine and Biotechnology, Vol. 2010, 2009, Article ID: 840581. doi:10.1155/2010/840518
[38] M. Zhu, B. Simons, N. Zhu, D. G. Oppenheimer and S. Chen, “Analysis of Abscisic Acid Responsive Proteins in Brassica Napus Guard Cells by Multiplexed Isobaric Tagging,” Journal of Proteomics, Vol. 73, No. 4, 2010, pp. 790-805. doi:10.1016/j.jprot.2009.11.002
[39] J. K. Eng, L. A. McCormack and J. R. Yates, “An Approach to Correlate Tandem Mass Spectral Data of Peptides with Amino Acid Sequences in a Protein Database,” Journal of the American Society for Mass Spectrometry, Vol. 5, No. 11, 1994, pp. 976-989. doi:10.1016/1044-0305(94)80016-2
[40] D. N. Perkins, D. J. C. Pappin, D. M. Creasy and J. S. Cottrell, “Probability-Based Protein Identification by Searching Sequence Databases Using Mass Spectrometry Data,” Electrophoresis, Vol. 20, No. 18, 1999, pp. 3551-3567. doi:10.1002/(SICI)1522-2683(19991201)20:18<3551::AID-ELPS3551>3.0.CO;2-2
[41] C. Liang, J. C. Smith and C. Hendrie, “A Comparative Study of Peptide Sequencing Software Tools for MS/ MS,” Proceedings of the 51st ASMS Conference on Mass Spectrometry and Allied Topics, Montreal, 8-13 June 2003.
[42] C. Jacques, A. Masselot, M. Giron, T. Dessingy and J. Magnin, “OLAV: Towards High-Throughput Tandem Mass Spectrometry Data Identification,” Proteomics, Vol. 3, No. 8, 2003, pp. 1454-1463. doi:10.1002/pmic.200300485
[43] Y. G. Lewis, S. P. Markey, J. A. Kowalak, L. Wagner, M. Xu, D. M. Maynard, X. Yang and W. Shi, “Open Mass Spectrometry Search Algorithm,” Journal of Proteome Research, Vol. 3, No. 5, 2004, pp. 958-964. doi:10.1021/pr0499491
[44] L. T. David, C. G. Fernando and M. C. Chambers, “MyriMatch: Highly Accurate Tandem Mass Spectral Peptide Identification by Multivariate Hypergeometric Analysis,” Journal of Proteome Research, Vol. 6, No. 2, 2007, pp. 654-661. doi:10.1021/pr0604054
[45] B. Marshall, Y. Cai and D. Goldberg, “Lookup Peaks: A Hybrid of de Novo Sequencing and Database Search for Protein Identification by Tandem Mass Spectrometry,” Analytical Chemistry, Vol. 79, No. 4, 2007, pp. 1393-1400. doi:10.1021/ac0617013
[46] L. Jian, A. Erassov, P. Halina, M. Canete, N. D. Vo, C. Chung, G. Cagney and A. Ignatchenko, “Sequential Interval Motif Search: Unrestricted Database Surveys of Global MS/MS Data Sets for Detection of Putative Post-Translational Modifications,” Analytical Chemistry, Vol. 80, No. 20, 2008, pp. 7846-7854. doi:10.1021/ac8009017
[47] A. K. Yadav, D. Kumar and D. Dash, “MassWiz: A Novel Scoring Algorithm with Target-Decoy Based Analysis Pipeline for Tandem Mass Spectrometry,” Journal of Proteome Research, Vol. 10, No. 5, 2011, pp. 2154-2160. doi:10.1021/pr200031z
[48] M. S. Mikhail, M. L. Nielsen, F. Kjeldsen and R. A. Zubarev, “Proteomics-Grade de Novo Sequencing Approach,” Journal of Proteome Research, Vol. 4, No. 6, 2005, pp. 2348-2354. doi:10.1021/pr050288x
[49] M. Bin, K. Zhang, C. Hendrie, C. Liang, M. Li, A. Doherty-Kirby and G. Lajoie, “PEAKS: Powerful Software for Peptidede Novo Sequencing by Tandem Mass Spectrometry,” Rapid Communication in Mass Spectrometry, Vol. 17, No. 20, 2003, pp. 2337-2342. doi:10.1002/rcm.1196
[50] R. Winkler, “ESIprot: A Universal Tool for Charge State Determination and Molecular Weight Calculation of Proteins from Electrospray Ionization Mass Spectrometry Data,” Rapid Communication in Mass Spectrometry, Vol. 24, No. 3, 2010, pp. 285-294. doi:10.1002/rcm.4384
[51] M. E. Monroe, N. Tolic, N. Jaitly, J. L. Shaw, J. N. Adkins and R. D. Smith, “VIPER: An Advanced Software Package to Support High-Throughput LC-MS Peptide Identification,” Bioinformatics, Vol. 23, No. 15, 2007, pp. 2021-2023. doi:10.1093/bioinformatics/btm281
[52] D. B. Weatherly, J. A. Atood, T. A. Minning, C. Cavola, R. L. Tarleton and R. Orlando, “A Heuristic Method for Assigning a False-Discovery Rate for Protein Identifications from Mascot Database Search Results,” Molecular and Cellular Proteomics, Vol. 4, No. 6, 2005, pp. 762-772. doi:10.1074/mcp.M400215-MCP200
[53] C. C. Paulo, J. S. G. Fischer, E. I. Chen, J. R. Yates and V. C. Barbosa, “PatternLab for Proteomics: A Tool for Differential Shotgun Proteomics,” BMC Bioinformatics, Vol. 9, 2008, p. 316. doi:10.1186/1471-2105-9-316
[54] M. P. Patricia, D. Walther, M. Quadroni, S. B. Catherinet, J. Burgess, C. G. Zimmermann-Ivol, J. C. Sanchez and P. A. Binz, “MSight: An Image Analysis Software for Liquid Chromatography-Mass Spectrometry,” Proteomics, Vol. 5, No. 9, 2005, pp. 2381-2384. doi:10.1002/pmic.200401244
[55] Z. Hans-Dieter, L. Jens., V. Khamenia, C. Schiller, A. Appel, H. Tammen, R. Crameri and H. Selle, “Datamining Methodology for LC-MALDI-MS Based Peptide Profiling,” Combinatorial Chemistry and High Throughput Screening, Vol. 8, No. 8, 2005, pp. 717-723. doi:10.2174/138620705774962481
[56] X. Duburcq, C. Olivier, F. Malingue, R. Desmet, A. Bouzidi, F. Zhou, C. Auriault and H. Gras-Masse, “Peptide-Protein Microarrays for the Simultaneous Detection of Pathogen Infections,” Bioconjugate Chemistry, Vol. 15, No. 2, 2004, pp. 307-316. doi:10.1021/bc034226d
[57] J. LaBaer and N. Ramachandran, “Protein Microarrays as Tools for Functionalproteomics,” Current Opinion in Chemical Biology, Vol. 9, No. 1, 2005, pp. 14-19. doi:10.1016/j.cbpa.2004.12.006
[58] G. S. Athwal, C. Lombardo, J. L. Huber, S. C. Masters, H. Fu and S. C. Huber, “Modulation of 14-3-3 Interactions with Target Proteins by Physical and Metabolic Effectors,” Plant and Cell Physiology, Vol. 41, No. 4, 2000, pp. 523-533. doi:10.1093/pcp/41.4.523
[59] N. Ramachandran, D. N. Larson, P. R. Stark, E. Hainsworth and J. LaBaer, “Emerging Tools for Real-Time Label-Free Detection of Interactions on Functional Protein Microarrays,” FEBS Journal, Vol. 272, No. 21, 2005, pp. 5412-5425. doi:10.1111/j.1742-4658.2005.04971.x
[60] K. E. Hammond-Kosack and J. D. G. Jones, “Responses to Plant Pathogens,” In: B. B. Buchanan, W. Gruissem and R. L. Jones, Eds., Biochemistry and Molecular Biology of Plants, American Society of Plant Physiology, Rockville, 2000, pp. 1102-1156.
[61] S. S. Ivanov., et al, “Antibodies Immobilized as Arrays to Profile Protein Post-Translational Modifications in Mammalian Cells,” Molecular and Cellular Proteomics, Vol. 3, No. 8, 2004, pp. 788-795. doi:10.1074/mcp.M300130-MCP200
[62] J. A. Lucas, “Plant Pathology and Plant Pathogens,” Blackwell Science, Oxford, 1998.
[63] P. M. Schenk, K. Kazan, L. Wilson, J. P. Anderson, T. Richmond and S. C. Somerville, “Coordinated Plant Defense Responses in Arabidopsis Revealed by Microarray Analysis,” Proceedings of National Academy of Science, Vol. 97, No. 21, 2000, pp. 11655-11660. doi:10.1073/pnas.97.21.11655
[64] P. M. Schenk, J. H. Choo and C. L. Wong, “Microarray Analyses to Study Plant Defense and Rhizosphere Microbe Interaction,” CAB Review: Perspective in Agriculture, Veterinary, Science, Nutrition, and Natural Resources, Vol. 4, No. 045, 2009, pp. 1-14.
[65] L. A. Mur, P. Kenton, A. J. Lloyd, H. Ougham and E. Prats, “The Hypersensitive Response; The Centenary Is upon Us but How Much Do We Know?” Journal of Experimental Botany, Vol. 59, No. 3, 2008, pp. 501-520. doi:10.1093/jxb/erm239
[66] F. B. Andrew, W. Jinrong and D. F. Mark, “Probing Plant-Pathogen Interaction and Downstream Defense Signaling Using DNA Microarray,” Functional & Integrative Genomics, Vol. 2, No. 6, 2002, pp. 259-273. doi:10.1007/s10142-002-0080-4
[67] M. A. Torres, D. G. Jonathan and J. L. Dangl, “Reactive Oxygen Species Signaling in Response to Pathogen,” Plant Physiology, Vol. 141, No. 2, 2006, pp. 373-378. doi:10.1104/pp.106.079467
[68] G. E. Vallad and R. M. Goodman, “Systemic Acquired Resistance and Induced Systemic Resistance in Conventional Agriculture,” Crop Science, Vol. 44, No. 6, 2004, pp. 1920-1934. doi:10.2135/cropsci2004.1920
[69] X. Dong, “Genetic Dissection of Systemic Acquired Resistance,” Current Opinion in Plant Biology, Vol. 4, No. 4, 2001, pp. 309-314. doi:10.1016/S1369-5266(00)00178-3
[70] J. A. Kreps, Y. Wu, H. S. Chang, T. Zhu, X. Wang and J. F. Harper, “Transcriptome Changes for Arabidopsis in Response to Salt, Osmotic, and Cold Stress,” Plant Physiology, Vol. 130, No. 4, 2002, pp. 2129-2141. doi:10.1104/pp.008532
[71] C. M. J. Pieterse and L. C. Van Loon, “NPR1: The Spider in the Web of Induced Resistance Signaling Pathways,” Current Opinion in Plant Biology, Vol. 7, No. 4, 2004, pp. 456-464. doi:10.1016/j.pbi.2004.05.006
[72] A. K. M. Ekramoddoullah and R. S. Hunt, “Changes in Protein Profile of Susceptible and Resistant Sugar-Pine Foliage Infected with the Whitepine Blister Rust Fungus Cronartium ribicola,” Canadian Journal in Plant Pathology, Vol. 15, No. 4, 1993, pp. 259-264. doi:10.1080/07060669309501921
[73] V. S. Asirvatham, B. S. Watson and L. W. Sumner, “Analytical and Biological Variances Associated with Proteomic Studies on Medicago Trancatula by Two Dimensional Polyacrylamide Gel Electrophoresis,” Proteomics, Vol. 2, No. 8, 2002, pp. 960-968. doi:10.1002/1615-9861(200208)2:8<960::AID-PROT960>3.0.CO;2-2
[74] G. Bestel-Corre, E. Dumas-Gaudot, V. Poinsot, M. Dieu, J. F. Dierick, D. Van Tuinen, J. Remacle, V. Gianinazzipearson and S. Gianinazzi, “Proteome Analysis and Identification of Symbiosis-Related Proteins from Medicago truncatula Gaertn. By Two Dimensional Electrophoresis and Mass Spectrometry,” Electrophoresis, Vol. 23, No. 1, 2002, pp. 122-137. doi:10.1002/1522-2683(200201)23:1<122::AID-ELPS122>3.0.CO;2-4
[75] G. Bestel-Corre, S. Gianinazzi and E. Dumass-Gaudot, “Impact of Sewage Sludge on Medicago truncatula Symbiotic Proteome,” Phytochemistry, Vol. 65, No. 11, 2004, pp. 1651-1659. doi:10.1016/j.phytochem.2004.04.037
[76] E. Dumas-Gaudot, N. Amiour, S. Weidmann, G. Bestel-Corre, B. Valot, S. Lenogue, V. Gianninazzi-Pearson and S. Gianninazzi, “A Technical Trick for Studying Proteomics in Parallel to Transcriptomics in Symbiotic Root-Fungus Interaction,” Proteomics, Vol. 4, No. 2, 2004, pp. 451-453.doi:10.1002/pmic.200300627
[77] K. Gallardo, C. Le Signor, J. Vandekerckhove, R. D. Thompson and J. Burstin, “Proteomics of Medicago truncaula Seed Development Establishes the Time Fram of Diverse Metabolic Processes Related to Reverse Accumulation,” Plant Physiology, Vol. 133, No. 2, 2003, pp. 664-682.
[78] U. Mathesius, G. Keijzers, S. H. A. Natera, J. J. Weinman, M. A. Djordjeivic and B. G. Rolfe, “Establishment of a Root Proteome Reference Map for the Model Legume Medicago truncatula Using the Expressed Sequence Tag Database for Peptide Mass Fingerprinting,” Proteomics, Vol. 1, No. 11, 2001, pp. 1424-1440. doi:10.1002/1615-9861(200111)1:11<1424::AID-PROT1424>3.0.CO;2-J
[79] B. S. Watson, Z. Lei, R. A. Dixon and L. W. Sumner, “Proteomics of Medicago sativa Cell Walls,” Phytochemistry, Vol. 65, No. 12, 2004, pp. 1709-1720. doi:10.1016/j.phytochem.2004.04.026
[80] F. Colditz, O. Nyamsuren, K. Niehaus, H. Eubel, H. P. Braun and F. Krajinski, “Proteomic Approach: Identification of Medicago truncatula Proteins Induced in Roots after Infection with the Pathogenic Oomycete Aphanomyces euteiches,” Plant Molecular Biology, Vol. 55, No. 1, 2004, pp. 109-120. doi:10.1007/s11103-004-0499-1
[81] M. A. Castillejo, N. Amiour, E. Dumas-Gaudot, D. Rubiales and J. V. Jorrin, “A Proteomic Approach to Studying Plant Response to Crenatebroomrape (Orobanche crenata) in Pea (Pisum sativum),” Phytochemistry, Vol. 65, No. 12, 2004, pp. 1817-1828. doi:10.1016/j.phytochem.2004.03.029
[82] U. Mathesius, S. Mulders, M. S. Gao, M. Teplitski, G. Caetano-Anolles, B. G. Rolfe and W. D. Bauer, “Extensive and Specific Responses of a Eukaryote to Bacterial Quorum-Sensing and Signals,” Proceedings of National Academy of Science of the United States of America, Vol. 100, No. 3, 2003, pp. 1444-1449. doi:10.1073/pnas.262672599
[83] F. Bouchart, A. Delangle, J. Lemoine, J. P. Bohin and J. M. Lacroix, “Proteomic Analysis of a Non-Virulent Mutant of the Phytopathogenic Bacterium Erwinia chrysanthemi Deficient in Osmoregulated Periplasmic Glucans: Change in Protein Expression is Not Restricted to the Envelope, but Affects General Metabolism,” Microbiology, Vol. 153, No. 3, 2007, pp. 760-767. doi:10.1099/mic.0.2006/000372-0
[84] N. Kazemi-Pour, G. Condemine and N. Hugouvieux-Cotte-Pattat, “The Secretome of the Plant Pathogenic Bacterium Erwinia chrysanthemi,” Proteomics, Vol. 4, No. 10, 2004, pp. 3177-3186. doi:10.1002/pmic.200300814
[85] S. A. Watt, A. Wilke, T. Patschkowski and K. Niehaus, “Comprehensive Analysis of the Extracellular Proteins from Xanthomonas campestris pv. campestris B100,” Proteomics, Vol. 5, No. 1, 2005, pp. 153-167. doi:10.1002/pmic.200400905
[86] M. I. Elvira, M. M. Galdeano, P. Gilardi, I. Garci′a-Luque, M. T. Serra, “Proteomic Analysis of Pathogenesis-Related Proteins (PRs) Induced by Compatible and Incompatible Interactions of Pepper Mild Mottle Virus (PMMoV) in Capsicum chinense L3 Plants,” Journal of Experimental Botany, Vol. 59, No. 6, 2008, pp. 1253-1265. doi:10.1093/jxb/ern032
[87] C. M. Valcu, M. Junqueira, A. Shevchenko and K. Schlink, (2009) Comparative Proteomic Analysis of Responses to Pathogen Infection and Wounding in Fagus sylvatica,” Journal of Proteome Research, Vol. 8, No. 8, 2009, pp. 4077-4091. doi:10.1021/pr900456c
[88] K. G. Zulak, F. K. Morgan, A. Joenel, C. S. David and J. F. Peter, “Plant Defense Responses in Opium Poppy Cell Cultures Revealed by Liquid Chromatography-Tandem Mass Spectrometry Proteomics,” Molecular & Cellular Proteomics, Vol. 8, No. 1, 2009, pp. 86-98. doi:10.1074/mcp.M800211-MCP200
[89] J. Lee, J. Feng, K. B. Campbell, B. E. Scheffler, W. M. Garrett, S. Thibivilliers, G. Stacey, D. Q. Naiman, M. L. Tucker, M. A. Pastor-Corrales and B. Cooper , “Quantitative Proteomic Analysis of Bean Plants Infected by a Virulent and Avirulent Obligate Rust Fungus,” Molecular & Cellular Proteomics, Vol. 8, 2009, pp. 19-31. doi:10.1074/mcp.M800156-MCP200
[90] P. Piffanelli, F. Zhou, C. Casais, J. Orme, B. Jarosch, U. Schaffrath, N. C. Collins, R. Panstruga and P. Schulze-Lefert, “The Barley MLO Modulator of Defense and Cell Death Is Responsive to Biotic and Abiotic Stress Stimuli,” Plant Physiology, Vol. 129, No. 3, 2002, pp. 1076-1085. doi:10.1104/pp.010954
[91] D. Kliebenstein, D. Pedersen, B. Barker and T. Mitchell-Olds, “Comparative Analysis of Quantitative Trait Loci Controlling Glucosinolates, Myrosinase and Insect Resistance in Arabidopsis thaliana,” Genetics, Vol. 161, No. 1, 2002, pp. 325-332.
[92] R. M. Collins, M. Afzal, D. A. Ward, M. C. Prescott, S. M. Sait, H. H. Rees and A. D. Tomsett, “Differential Proteomic Analysis of Arabidopsis thaliana Genotypes Exhibiting Resistance or Susceptibility to the Insect Herbivore, Plutella xylostella,” PLoS One, Vol. 5, No. 4, 2010, e10103. doi:10.1371/journal.pone.0010103
[93] G. P. Biewenga, G. R. M. M. Haenen and A. Bast, “The Pharmacology of the Antioxidant Lipoic Acid,” General Pharmacology: The Vascular System, Vol. 29, No. 3, 1997, pp. 315-331.doi:10.1016/S0306-3623(96)00474-0
[94] A. Koshkin, G. M. Knudsen and P. R. O. de Montellano, “Intermolecular Interactions in the AhpC/AhpD Antioxidant Defence System of Mycobacterium tuberculosis,” Archives of Biochemistry and Biophysics, Vol. 427, No. 1, 2004, pp. 41-47. doi:10.1016/j.abb.2004.04.017
[95] J. H. Zhang, L. W. Sun, L. L. Liu, S. L. An, X. Wang, J. Zhang, J. L. Jin, S. Y. Li and J. H. Xi, “Proteomic Analysis of Interactions between the Generalist Herbivore Spodoptera exigua (Lepidoptera Noctuidae) and Arabidopsis thaliana,” Plant Molecular Biology Reporter, Vol. 28, No. 2, 2010, pp. 324-333. doi:10.1007/s11105-009-0156-6
[96] H. Li, P. H. Goodwin, Q. Han, L. Huang and Z. Kang, “Microscopy and Proteomic Analysis of the Non-Host Resistance of Oryza sativa to the Wheat Leaf Rust Fungus, Puccinia triticina f. sp. tritici,” Plant Cell Reports, Vol. 31, No. 4, 2012. doi:10.1007/s00299-011-1181-0
[97] A. K. Mukherjee, M. J. Carp, R. Zuchman, T. Ziv, B. A. Horwitz and S. Gepstein, “Proteomics of the Response of Arabidopsis thaliana to Infection with Alternaria brassicicola,” Journal of Proteomics, Vol. 73, No. 4, 2010, pp. 709-720. doi:10.1016/j.jprot.2009.10.005
[98] D. Cecconi, S. Orzetti, E. Vandelle, S. Rinalducci, L. Zolla and M. Delledonne, “Protein Nitration during Defese Response in Arabidopsis thaliana,” Electrophoresis, Vol. 30, No. 14, 2009, pp. 2460-2468. doi:10.1002/elps.200800826
[99] S. Chivasa, J. M. Hamilton, R. S. Pringle, B. K. Ndimba, W. J. Simon, K. Lindsey and A. R. Slabas, “Proteomic Analysis of Differentially Expressed Proteins in Fungal Elicitor-Treated Arabidopsis Cell Cultures,” Journal of Experimental Botany, Vol. 57, No. 7, 2006, pp. 1553-1562. doi:10.1093/jxb/erj149
[100] A. M. E. Jones, V. Thomas, M. H. Bennett, J. Mansfield, and M. Grant, “Modifications to the Arabidopsis Defence Proteome Occur Prior to Significant Transcriptional Change in Response to Inoculation with Pseudomonas syringae,” Plant Physiology, Vol. 142, No. 4, 2006, pp. 1603-1620. doi:10.1104/pp.106.086231
[101] Y. Liang, S. Srivastava, M. H. Rahman, S. E. Strelkov, and N. N. Kav, “Proteome Changes in Leaves of Brassica napus L. as a Result of Sclerotinia sclerotiorum Challenge,” Journal of Agricultural and Food Chemistry, Vol. 56, No. 60, 2008, pp. 1963-1976. doi:10.1021/jf073012d
[102] N. Sharma, N. Hotte, M. H. Rahman, M. Mohammadi, M. K. Deyholos and N. N. Kav, “Towards Identifying Brassica Proteins Involved in Mediating Resistance to Leptosphaeria maculans: A Proteomics-Based Approach,” Proteomics, Vol. 8, No. 17, 2008, pp. 3516-3535. doi:10.1002/pmic.200701141
[103] A. Wongpia and K. Lomthaisong “Changes in the 2DE Protein Profiles of Chilli Pepper,” ScienceAsia, Vol. 36, 2010, pp. 259-270.
[104] G. Segarra, E. Casanova, D. Bellido, M. A. Odena, E. Oliveira and I. Trillas, “Proteome, Salicylic Acid and Jasmonic Acid Changes in Cucumber Plants Inoculated with Trichoderma asperellum Strain T34,” Proteomics, Vol. 7, No. 21, 2007, pp. 3942-3952. doi:10.1002/pmic.200700173
[105] O. L. Franco, J. L. Pereira, P. H. A. Costa, T. L. Rocha, E. V. S. Albuquerque, M. F. Grossi-de-Sa, R. M. D. G. Carneiro, R. G. Carneiro and A. Mehta, “Methodological Evaluation of 2DE to Study Root Proteomics during Nematode Infection in Cotton and Coffee Plants,” Preparative Biochemistry and Biotechnology, Vol. 40, No. 2, 2010, pp. 152-163. doi:10.1080/10826060903558976
[106] A. Mehta and Y. B. Rosato, “Differentially Expressed Proteins in the Interaction of Xanthomonas axonopodis pv. citri with Leaf Extract of the Host Plant,” Proteomics, Vol. 1, No. 9, 2001, pp. 1111-1118. doi:10.1002/1615-9861(200109)1:9<1111::AID-PROT1111>3.0.CO;2-7
[107] N. Buensanteai, G. Y. Yuen and S. Prathuangwong, “Priming, Signaling and Protein Production Associated with Induced Resistance by Bacillus amyloliquefaciens KPS46,” World Journal of Microbiology and Biotechnology, Vol. 25, No. 7, 2009, pp. 1275-1286. doi:10.1007/s11274-009-0014-6
[108] A. J. Afzal, A. Natarajan, N. Saini, M. J. Iqbal, M. Geisler, H. A. El-Shemy, R. Mungur, L. Willmitzer and D. A. Lightfoot, “The Nematode Resistance Allele at the rhg1 Locus Alters the Proteome and Primary Metabolism of Soyabean Roots,” Plant Physiology, Vol. 151, No. 3, 2009, pp. 1264-1280. doi:10.1104/pp.109.138149
[109] M. L. Perez-Bueno, J. Rahoutei, C. Sajnani, I. Garcia-Luque and M. Baron, “Proteomic Analysis of the Oxygen-Evolving Complex of Photosystem II under Biotic Stress: Studies on Nicotiana benthamiana Infected with tobamoviruses,” Proteomics, Vol. 4, No. 20, 2004, pp. 418-425. doi:10.1002/pmic.200300655
[110] G. L. Coaker, B. Willard, M. Kinter, E. J. Stockinger and D. M. Francis, “Proteomic Analysis of Resistance Mediated by Rcm 2.0 and Rcm 5.1, Two Loci Controlling Resistance to Bacterial Canker of Tomato,” Molecular Plant–Microbe Interactions, Vol. 17, No. 9, 2004, pp. 1019-1028. doi:10.1094/MPMI.2004.17.9.1019
[111] P. M. Houterman, D. Speijer, H. L. Dekker, C. G. De Koster, B. J. C. Cornelissen and M. Rep, “The Mixed Xylem Sap Proteome of Fusarium oxysporum-infected Tomato Plants,” Molecular Plant Pathology, Vol. 8, No. 2, 2007, pp. 215-221. doi:10.1111/j.1364-3703.2007.00384.x
[112] M. A. Castillejo, A. M. Maldonado, E. Dumas-Gaudot, M. Fernández-Aparicio, R. Susin, R. Diego and J. V. Jorrin, “Differential Protein Expression to Investigate Responses and Resistance to Orobranche crenata in Medicago truncatula,” BMC Genomics, Vol. 10, 2009, pp. 294-298. doi:10.1186/1471-2164-10-294
[113] F. Delalande, C. Carapito, J. P. Brizard, C. Brugidou and A. Van Dorsselaer, “Multigenic Families and Proteomics: Extended Protein Characterization as a Tool for Paralog Gene Identification,” Proteomics, Vol. 5, No. 2, 2005, pp. 450-460. doi:10.1002/pmic.200400954
[114] M. Ventelon-Debout, F. Delalande, J. P. Brizard, H. Diemer, A. van Dorsselaer and C. Brugidou, “Proteome Analysis of Cultivar-Specific Deregulations of Oryza sativa indica and O. sativa japonica Cellular Suspension Undergoing rice yellow mottle virus infection,” Proteomics, Vol. 4, No. 1, 2004, pp. 216-225. doi:10.1002/pmic.200300502
[115] Z. Wei, W. Hu, Q. lin, X. Cheng, M. Tong, L. Zhu, R. Chen and G. He, “Understanding Rice Plant Resistance to the Brown Planthopper (Nilaparvata lugens): A Proteomic Approach,” Proteomics, Vol. 9, No. 10, 2009, pp. 2798-2808. doi:10.1002/pmic.200800840
[116] S. T. Kim, S. G. Kim, D. H. Hwang, S. Y. Kang, H. J. Kim, B. H. Lee, J. J. Lee and K. Y. Kang, “Proteomic Analysis of Pathogen-Responsive Proteins from Rice Leaves Induced by Rice Blast Fungus, Magnaporthe grisea,” Proteomics, Vol. 4, No. 11, 2004, pp. 3569-3578. doi:10.1002/pmic.200400999
[117] T. Mahmood, A. Jan, M. Kakishima and S. Komatsu, “Proteomic Analysis of Bacterial-Blight Defence Responsive Proteins in Rice Leaf Blades,” Proteomics, Vol. 6, No. 22, 2006, pp. 6053-6065. doi:10.1002/pmic.200600470
[118] A. Campos, G. da Costa, A. V. Coelho and P. Fevereiro, “Identification of Bacterial Protein Markers and Enolase as a Plant Response Protein in the Infection of Olea europaea subsp. Pseudomonas savastanoi pv. Savastanoi,” European Journal of Plant Pathology, Vol. 125, No. 4, 2009, pp. 603-616. doi:10.1007/s10658-009-9509-0
[119] S. T. Tahara, A. Mehta and Y. B. Rosato, “Proteins Induced by Xanthomonas axonopodis pv. passiflorae with leaf extract of the host plant (Passiflorae edulis),” Proteomics, Vol. 3, No. 1, 2003, pp. 95-102.
[120] P. Diaz-Vivancos, M. Rubio, V. Mesonero, P. M. Periago, A. R. Barcelo, P. Martinez-Gomez and J. A. Hernandez, “The Apoplastic Antioxidant System in Prunus: Response to Long-Term Plum Pox Virus Infection,” Journal of Experimental Botany, Vol. 57, No. 14, 2006, pp. 3813-3824. doi:10.1093/jxb/erl138
[121] D. Dahal, D. Heintz, A. Van Dorsselaer, H. P. Braun and K. Wydra, “Pathogenesis and Stress Related, as well as Metabolic Proteins Are Regulated in Tomato Stems Infected with Ralstonia solanacearum,” Plant Physiology and Biochemistry, Vol. 47, No. 9, 2009, pp. 838-846. doi:10.1016/j.plaphy.2009.05.001
[122] L. Babujee, B. Venkatesh, A. Yamazaki and S. Tsuyumu, “Proteomic Analysis of the Carbonate Insoluble Outer Membrane Fraction of the Soft-Rot Pathogen Dickeya dadantii (syn. Erwinia chrysanthemi) Strain 3937,” Journal of Proteome Research, Vol. 6, No. 1, 2007, pp. 62-69. doi:10.1021/pr060423l
[123] C. Rampitsch, N. V. Bykova, B. Mccallum, E. Beimcik, and W. Ens, “Analysis of the Wheat and Puccinia triticina (leaf rust) Proteomes during a Susceptible Host Pathogen Interaction,” Proteomics, Vol. 6, No. 6, 2006, pp. 1897-1907. doi:10.1002/pmic.200500351
[124] W. Zhou, F. Eudes and A. Laroche, “Identification of Differentially Regulated Proteins in Response to a Compatible Interaction between the Pathogen Fusarium graminearum and Its Host, Triticum aestivum,” Proteomics, Vol. 6, No. 16, 2006, pp. 4599-4609. doi:10.1002/pmic.200600052
[125] S. Campo, M. Carrascal, M. Coca, J. Abian and B. S. Segundo, “The Defence Response of Germinating Maize Embryos against Fungal Infection: A Proteomics Approach,” Proteomics, Vol. 4, No. 2, 2004, pp. 383-396. doi:10.1002/pmic.200300657
[126] S. Kundu, et al., “Proteomic Analysis of Salicylic Acid Induced Resistance to Mungbean Yellow Mosaic India Virus in Vigna mungo,” Journal of Proteomics, Vol. 74, No. 3, 2011, pp. 337-349. doi:10.1016/j.jprot.2010.11.012
[127] P. W. Muturi, J. K. Mwololo, S. W. Munyiri, P. Rubaihayo, J. K. Munyua, M. Mgonja, E. Manyasa and N. Kiarie, “A Perspective on Proteomics: Current Applications, Challenges and Potential Uses,” Agriculture and Biology Journal of North America, Vol. 1, No. 5, 2010, pp. 916-918.
[128] J. M. Dunwell, A. M. Maria and H. Raul, “Transcriptome Analysis and Crop Improvement,” Biological Research, Vol. 34, No. 3-4, 2001, pp. 3-4. doi:10.4067/S0716-97602001000300003

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.