Plasma and Red Blood Cells Concentration Profiles of Ktamine after Single Intravenous Administration in an Anaesthetic Protocol in Horses


The aim of this study was to describe the concentration profile of ketamine in plasma and red blood cells following an intravenous (IV) bolus in the horse. Ten healthy standardbred horses (two males and height females) 7.7 ± 4.6 (mean value ± SD) years old and weighting 380 ± 21 kg (mean value ± SD) were recruited. The horses were premedicated with acepromazine (0.04 mg·kg-1·IV). Fifteen minutes later they received romifidine (0.08 mg·kg-1·IV), and 5 minutes after they were administered midazolam (0.06 mg·kg-1·IV). Immediately, anaesthesia was induced by ketamine (2.2 mg·kg-1·IV). Venous blood samples were collected at scheduled time points. Plasma and red blood cells (RBCs) concentration of ketamine was assayed using a high performance liquid chromatographic method (HPLC/UV-DAD). The high mean recovery rates, the high sensitivity, the good linearity, suggest a clinical applicability of the analytical method. A bicompartmental model resulted as the most appropriate to describe the ketamine concentrationtime profile for both plasma and RBCs. The fitted regression line between ketamine plasma concentrations and RBC concentrations supports the good correlation between ketamine concentrations in plasma and in RBCs. The kinetic parameters of ketamine calculated for RBC are equal or very similar to the plasma ones. The study confirms the kinetic behaviour of ketamine used in the horse as anaesthetic inducers in routine surgery. Finally, the bicompartmental model well describes the ketamine profile also in RBCs, that it is very close to the plasma profile, underlining the great importance of RBCs as blood subcompartment.

Share and Cite:

F. Sori, N. Romagnoli, D. Ferrara, A. Zaghini and P. Roncada, "Plasma and Red Blood Cells Concentration Profiles of Ktamine after Single Intravenous Administration in an Anaesthetic Protocol in Horses," Open Journal of Veterinary Medicine, Vol. 3 No. 2, 2013, pp. 136-142. doi: 10.4236/ojvm.2013.32022.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] H. Koinig, P. Marhofer, C. Krenn, W. Klimsha, E. Wilding, W. Erlacher, A. Nikolic, K. Turnheim and M. Semsroth, “Analgesic Effect of Caudal and Intramuscular S(+)-Ketamine in Children,” Anesthesiology, Vol. 93, No. 4, 2000, pp. 976-980. doi:10.1097/00000542-200010000-00017
[2] EMEA, “Ketamine Summary Report,” European Agency for the Evaluation of Medicinal Products, Committee for Veterinary Medical Products, 1997.
[3] S. M. Green and B. Krauss, “Clinical Practice Guideline for Emergency Department Ketamine Dissociative Sedation in Children,” Annals of Emergency Medicine, Vol. 44, No. 5, 2004, pp. 460-471. doi:10.1016/j.annemergmed.2004.06.006
[4] N. S. Matthews, C. L. Fielding and E. Swinebroad, “How to Use a Ketamine Constant Rate Infusion in Horses for Analgesia,” Proceedings of the 50th Annual Convention of the American Association of Equine Practitioner, Vol. 50, 2004, pp. 227-228.
[5] M. Chauvin, “La Kétamine dans la Douleur Aigue: De la Pharmacologie à la Clinique,” Réanimation, Vol. 14, No. 8, 2005, pp. 686-691. doi:10.1016/j.reaurg.2005.10.014
[6] S. Himmelseher and M. E. Durieux, “Ketamine for Perioperative Pain Management,” Anesthesiology, Vol. 102, No. 1, 2005, pp. 211-220. doi:10.1097/00000542-200501000-00030
[7] N. A. Anis, S. C. Berry, N. R. Burton and D. Lodge, “The Dissociative Anaesthetics, Ketamine and Phencyclidine, Selectively Reduce Excitation of Central Mammalian Neurones by N-methyl-D-aspartate,” British Journal of Pharmacology, Vol. 79, No. 2, 1983, pp. 565-575. doi:10.1111/j.1476-5381.1983.tb11031.x
[8] G. Ellison, “The N-Methyl-D-Aspartate Antagonists Phencyclidine, Ketamine and Dizocilpine as Both Behavioural and Anatomical Models of the Dementias,” Brain Research Reviews, Vol. 20, No. 2, 1995, pp. 250-267. doi:10.1016/0165-0173(94)00014-G
[9] P. Richebé, C. Rivat, B. Rivalan, P. Maurette and G. Simonnet, “Kétamine à Faibles Doses: Antihyperalgésique, Non-Analgésique,” Annales Francaises d’Anesthésie, Vol. 24, No. 11, 2005, pp. 1349-1359. doi:10.1016/j.annfar.2005.07.069
[10] W. W. Muir, R. T. Skarda and D. W. Milne, “Evaluation of Xylazine and Ketamine Hydrochloride for Anesthesia in Horses,” American Journal of Veterinary Research, Vol. 38, No. 2, 1977, pp. 195-201.
[11] J. S. Kaka, P. A. Klavano and W. L. Hayton, “Pharmacokinetics of Ketamine in the Horse,” American Journal of Veterinary Research, Vol. 40, No. 7, 1979, pp. 978-981.
[12] A. E. Waterman, S. A. Robertson and J. G. Lane, “Pharmacokinetics of Intravenously Administered Ketamine in the Horse,” Research in Veterinary Science, Vol. 42, No. 2, 1987, pp. 162-166.
[13] P. M. Taylor, S. P. L. Luna, J. W. Sear and M. J. Wheeler, “Total Intravenous Anaesthesia in Ponies Using Detomidine, Ketamine and Guaiphenesin: Pharmacokinetics, Cardiopulmonary and Endocrine Effects,” Research in Veterinary Science, Vol. 59, No. 1, 1995, pp. 17-23. doi:10.1016/0034-5288(95)90024-1
[14] M. P. Larenza, C. Peterbauer, M. F. Landoni, O. L. Levionnois, U. Schatzmann, C. Spadavecchia and W. Thotmann, “Stereoselective Pharmacokinetics of Ketamine and Norketamine after Constant Rate Infusion of a Subanesthetic Dose of Racemic Ketamine or S-Ketamine in Shetland Ponies,” American Journal of Veterinary Research, Vol. 70, No. 7, 2009, pp. 831-839. doi:10.2460/ajvr.70.7.831
[15] P. Roncada, P. Pandolfi, V. Nigro, N. Romagnoli and A. Zaghini, “Ketamine Levels in Blood Corpuscular Fraction after Intramuscular Administration of the Dissociative Anaesthetic in the Cat: Preliminary Considerations,” Proceedings of the 19th International Congress of the European Association for Veterinary Pharmacology and Toxicology (EAVPT), Journal of Veterinary Pharmacology and Therapeutics, Vol. 26, No. S1, 2003, pp. 209-210.
[16] P. Roncada, N. Romagnoli, V. Nigro and A. Zaghini, “Ketamine Levels in Plasma and Red Blood Cells after Intravenous Administration in Dogs,” Proceedings of the ISSX Meeting: Drug Metabolism and Disposition—From Molecular to Man, Drug Metabolism Reviews, Vol. 37, No. S1, 2005, p. 80.
[17] C. S. Olver, G. A. Andrews, J. E. Smith and J. J. Kaneko, “Erythrocyte structure and Function,” In: Wiley-Backwell, Ed., Shalm’s Veterinary Hematology, Douglas J. Weiss and K. Jane Wardrop Inc., 6th Edition, Ames, 2010, pp. 123-130.
[18] P. H. Hinderling, “Red Blood Cells: A Neglected Compartment in Pharmacokinetics and Pharmacodynamics,” Pharmacological Reviews, Vol. 49, No. 3, 1997, pp. 279-295.
[19] C. G. Millán, M. L. Sayalero Marinero, A. Z. Castaneda and J. M. Lanao, “Drug, Enzyme and Peptide Delivery Using Erythrocytes as Carriers,” Journal of Controlled Release, Vol. 95, No. 1, 2004, pp. 27-49. doi:10.1016/j.jconrel.2003.11.018
[20] L. Rossi, S. Serafini, L. Cenerini, F. Picardi, L. Bigi, I. Panzani and M. Magnani, “Erythrocyte-Mediated Delivery of Dexamethasone in Patients with Chronic Obstructive Pulmonary Disease,” Biotechnology and Applied Biochemistry, Vol. 33, No. 2, 2001, pp. 85-89. doi:10.1042/BA20000087
[21] A. S. Gross, A. Nicolay and A. Eschalier, “Simultaneous Analysis of Ketamine and Bupivacaine in Plasma by High-Performance Liquid Chromatography,” Journal of Chromatography B, Vol. 728, No. 1, 1999, pp. 107-115. doi:10.1016/S0378-4347(99)00097-3
[22] M. Magnani, L. Rossi, M. D’Ascenzo, I. Panzani, L. Bigi and A. Zanella, “Erythrocyte Engineering for Drug Delivery and Targeting,” Biotechnology and Applied Biochemistry, Vol. 28, No. 1, 1998, pp. 1-6.
[23] A. Nolan, J. Reid, E. Welsh, D. Flaherty, R. McCormack and A. M. Monteiro, “Simultaneous Infusions of Propofol and Ketamine in Ponies Premedicated with Detomidine: A Pharmacokinetic Study,” Research in Veterinary Science, Vol. 60, No. 3, 1996, pp. 262-266. doi:10.1016/S0034-5288(96)90051-X
[24] D. Flaherty, A. Nolan, J. Reid and A. M. Monteiro, “The Pharmacokinetic of Ketamine after Continuous Infusion under Halothane Anaesthesia in Horses,” Veterinary Anaesthesia and Analgesia, Vol. 25, No. 8, 1998, pp. 31-36. doi:10.1111/j.1467-2995.1998.tb00166.x
[25] L. A. Bidwell, L. R. Bramlage and W. A. Rood, “Equine Perioperative Fatalities Associated with General Anaesthesia at a Private Practice—A Retrospective Case Series,” Veterinary Anaesthesia and Analgesia, Vol. 34, No. 1, 2007, pp. 23-30. doi:10.1111/j.1467-2995.2005.00283.x
[26] J. S. Kaka and W. L. Hayton, “Pharmacokinetics of Ketamine and Two Metabolites in the Dog,” Journal of Pharmacokinetics and Biopharmaceutics, Vol. 8, No. 2, 1980, pp. 193-202. doi:10.1007/BF01065193
[27] T. F. Wolf and J. D. Adams, “Biotransformation of Ketamine, (Z)-6-Hydroxyketamine and (E)-6-Hydroxy-Ketamine by Rat, Rabbit and Human Liver Microsomal Preparation,” Xenobiotica, Vol. 17, No. 7, 1987, pp. 839-847. doi:10.3109/00498258709043993
[28] M. Shimoyama, N. Shimoyama, A. L. Gorman, K. J. Elliot and C. E. Inturrisi, “Oral Ketamine Is Antinociceptive in the Rat Formalin Test: Role of the Metabolite, Norketamine,” Pain, Vol. 81, No. 1-2, 1999, pp. 85-93. doi:10.1016/S0304-3959(98)00269-3

Copyright © 2021 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.