Share This Article:

A New Metal Tag for Highly Selective and Sensitive Analyses of Amino Acids and Dipeptides by HPLC/ICP-MS

Abstract Full-Text HTML Download Download as PDF (Size:1470KB) PP. 80-89
DOI: 10.4236/jasmi.2013.32010    4,543 Downloads   8,323 Views   Citations

ABSTRACT

We have developed a novel metal tag, bis(ethylenediamine)-4'-methyl-4-carboxybipyridine-ruthenium N-succinimidyl ester (ECRS) for sensitive analysis of amino acids using high performance liquid chromatography/inductively coupled plasma mass spectrometry (HPLC/ICP-MS). ECRS is a functional reagent, containing an ester group at one end that can be activated to bind to amino group and a chelated ruthenium at the other. The activated ester was reacted briefly with amino groups under weakly alkaline conditions. The ruthenium was detected sensitively by ICP-MS. ECRS was reacted with 17 proteinogenic amino acids in borate buffer. The derivatives were separated by reversed phase HPLC and identified by quadrupole-based ICP-MS. ECRS was suitable for speciation; low molecular weight compounds containing amino groups. We have thus established a quantitative analytical method for amino acids and dipeptides. The detection limits of branched amino acids (signal-to-noise ratio of 3) were 1.5 nmol·L-1 in the standard solution (100 amol per injection).

Conflicts of Interest

The authors declare no conflicts of interest.

Cite this paper

D. Iwahata, K. Nakamura, R. Yamada, H. Miyano and N. Yamada, "A New Metal Tag for Highly Selective and Sensitive Analyses of Amino Acids and Dipeptides by HPLC/ICP-MS," Journal of Analytical Sciences, Methods and Instrumentation, Vol. 3 No. 2, 2013, pp. 80-89. doi: 10.4236/jasmi.2013.32010.

References

[1] A. Watanabe, T. Higashi, T. Sakata and H. Nagashima, “Serum Amino Acid Levels in Patients with Hepatocellular Carcinoma,” Cancer, Vol. 54, No. 9, 1984, pp. 1875-1882. doi:10.1002/1097-0142(19841101)54:9<1875::AID-CNCR2820540918>3.0.CO;2-O
[2] K. J. Carpenter, A. E. Harper and R. E. Olson, “Experiments that Changed Nutritional Thinking,” The Journal of Nutrition, Vol. 127, No. 5, 1997, pp. 1017S-1053S.
[3] R. M. Jennie, “Protein and Amino Acid Metabolism during and after Exercise and the Effects of Nutrition,” Annual Review of Nutrition, Vol. 20, 2000, pp. 457-483. doi:10.1146/annurev.nutr.20.1.457
[4] A. Wagner and D. Fell, “The Small World inside Large Metabolic Networks,” Proceedings of Royal Society, Vol. 268, No. 1478, 2001, pp. 1803-1810. doi:10.1098/rspb.2001.1711
[5] G. Weinlich, C. Murr, L. Richardsen, C. Winkler and D. Fuchs, “Decreased Serum Tryptophan Concentration Predicts Poor Prognosis in Malignant Melanoma Patients,” Dermatology, Vol. 214, 2007, 214, pp. 8-14. doi:10.1159/000096906
[6] E. Holm, O. Sedlaczek and E. Grips, “Amino Acid Metabolism in Liver Disease,” Current Opinion in Clinical Nutrition & Metabolic Care, Vol. 2, No. 1, 1999, pp. 47-53. doi:10.1097/00075197-199901000-00009
[7] M. Holecek, “Three Targets of Branched-Chain Amino Acid Supplementation in the Treatment of Liver Disease,” Nutrition, Vol. 26, No. 5, 2010, pp. 482-490. doi:10.1016/j.nut.2009.06.027
[8] O. A. Obeid, “Plasma Amino Acid Concentrations in Patients with Coronary Heart Disease: A Comparison between U.K. Indian Asian and Caucasian Men,” International Journal for Vitamin and Nutrition Research, Vol. 75, No. 4, 2005, pp. 267-273. doi:10.1024/0300-9831.75.4.267
[9] D. Gerber, “Decreased Concentration of Free Histidine in Serum in Rheumatoid Arthritis, an Isolated Amino Acid Abnormality Not Associated with Generalized Hypoaminoacidemia,” The Journal of Rheumatology, Vol. 2, 1975, pp. 384-392.
[10] Q. Zhang, M. Takahashi, Y. Noguchi, T. Sugimoto, et al., “Plasma Amino Acid Profiles Applied for Diagnosis of Advanced Liver Fibrosis in Patients with Chronic Hepatitis C Infection,” Hepatology Research, Vol. 34, 2006, pp. 170-177. doi:10.1016/j.hepres.2005.12.006
[11] Y. Ohtsuka and Y. Agishi, “Abnormal Amino Acid Metabolism in Diabetes Mellitus,” Nippon Rinsho, Vol. 50, 1992, pp. 1631-1636.
[12] A. Mochizuki, A. Tamaoka, A. Shimohata, Y. Komatsuzaki and S. I. Shoji, “Ab42-Positive Non-Pyramidal Neurons around Amyloid Plaques in Alzheimer’s Disease,” Lancet, Vol. 355, No. 9197, 2000, pp. 42-44. doi:10.1016/S0140-6736(99)04937-5
[13] A. R. Hipkis, “Carnosine, Diabetes and Alzheimer’s Desease,” Expert Review of Neurotherapeutics, Vol. 9, No. 5, 2009, pp. 583-585. doi:10.1586/ern.09.32
[14] T. Santa, A. Takeda, S. Uchiyama, T. Fukushima, et al., “N-(4-Nitro-2,1,3-benzoxadiazoyl-7-yl)-N-methyl-2-aminoacetohydrazide (NBD-CO-Hz) as a Precolumn Fluorescent Derivatization Reagent for Carboxylic Acids in High-Performance Liquid Chromatography,” Journal of Pharmaceutical and Biomedical Analysis, Vol. 17, No. 6-7, 1998, pp. 1065-1070. doi:10.1016/S0731-7085(98)00072-7
[15] S. Uchiyama, T. Santa, N. Okiyama, T. Fukushima and K. Imai, “Fluorogenic and Fluorescent Labeling Reagents with a Benzofurazan Skeleton,” Biomedical Chromatography, Vol. 15, No. 5, 2001, pp. 295-318. doi:10.1002/bmc.75
[16] S. Iwatani, S. V. Dien, K. Shimbo, K. Kubota, et al., “Determination of Metabolic Flux Changes during Fed-Batch Cultivation from Measurements of Intracellular Amino Acids by LC-MS/MS,” Journal of Biotechnology, Vol. 128, No. 1, 2007, pp. 93-111. doi:10.1016/j.jbiotec.2006.09.004
[17] K. Shimbo, A. Yahashi, K. Hirayama, M. Nakazawa and H. Miyano, “Multifunctional and Highly Sensitive Precolumn Reagents for Amino Acids in Liquid Chromatography/Tandem Mass Spectrometry,” Analytical Chemistry, Vol. 81, No. 13, 2009, pp. 5172-5179. doi:10.1021/ac900470w
[18] K. Shimbo, T. Oonuki, A. Yahashi, K. Hirayama and H. Miyano, “Precolumn Derivatization Reagents for High-Speed Analysis of Amines and Amino Acids in Biological Fluid Using Liquid Chromatography/Electrospray Ionization Tandem Mass Spectrometry,” Rapid Communications in Mass Spectrometry, Vol. 23, No. 10, 2009, pp. 1483-1492. doi:10.1002/rcm.4026
[19] D. H. Spackman, W. H. Stein and S. Moore, “Automatic Recording Apparatus for Use in the Chromatography of Amino Acids,” Analytical Chemistry, Vol. 30, No. 7, 1958, pp. 1190-1206. doi:10.1021/ac60139a006
[20] S. Ruhemann, “Triketohydrindene Hydrate. Part IV. Hydrindantin and Its Analogues,” Journal of the Chemical Society, Vol. 99, 1911, pp. 1306-1310. doi:10.1039/ct9119901306
[21] S. A. Cohen and D. J. Strydom, “Amino Acid Analysis Utilizing Phenylisothiocyanate Derivatives,” Analytical Biochemistry, Vol. 174, No. 1, 1988, pp. 1-16. doi:10.1016/0003-2697(88)90512-X
[22] B. S. Glaeser and T. A. Hare, “Measurement of GABA in Human Cerebrospinal Fluid,” Biochemical Medicine, Vol. 12, 1975, pp. 274-282. doi:10.1016/0006-2944(75)90129-5
[23] S. A. Cohen and K. M. D. Antonis, “Applications of Amino Acid Derivatization with 6-Aminoquinolyl-N-hydroxysuccinimidyl Carbamate Analysis of Feed Grains, Intravenous Solutions and Glycoproteins,” Journal of Chromatography A, Vol. 661, No. 1-2, 1994, pp. 25-34. doi:10.1016/0021-9673(93)E0821-B
[24] Y. Watanabe and K. Imai, “Serum Amino Acid Levels in Patients with Hepatocellular Carcinoma,” Analytical Biochemistry, Vol. 116, No. 2, 1981, pp. 471-472. doi:10.1016/0003-2697(81)90390-0
[25] M. Piraud, C. Vianey-Saban, K. Petritis, C. Elfakir, et al., “ESI-MS/MS Analysis of Underivatised Amino Acids: A New Tool for the Diagnosis of Inherited Disorders of Amino Acid Metabolism. Fragmentation sTudy of 79 Molecules of Biological Interest in Positive and Negative Ionisation Mode,” Rapid Communications in Mass Spectrometry, Vol. 17, No. 12, 2003, pp. 1297-1311. doi:10.1002/rcm.1054
[26] W. C. Yang, H. Mirzaei, X. Liu and F. Regnier, “Enhancement of Amino Acid Detection and Quantification by Electrospray Ionization Mass Spectrometry,” Analytical Chemistry, Vol. 78, No. 13, 2006, pp. 4702-4708. doi:10.1021/ac0600510
[27] P. Ross, Y. Huang, J. Marchese, B. Williamson, et al., “Multiplexed Protein Quantitation in Saccharomyces Cerevisiae Using Amine-Reactive Isobaric Tagging Reagents,” Molecular & Cellular Proteomics, Vol. 3, 2004, pp. 1154-1169. doi:10.1074/mcp.M400129-MCP200
[28] C. Zhang, F. Wu, Y. Zhang, X. Wang and X. Zhang, “A Novel Combination of Immunoreaction and ICP-MS as a Hyphenated Technique for the Determination of Thyroid-Stimulating Hormone (TSH) in Human Serum,” Journal of Analytical Atomic Spectrometry, Vol. 16, No. 12, 2001, pp. 1393-1396. doi:10.1039/b106387c
[29] C. Zhang, F. Wu and X. Zhang, “ICP-MS-Based Competitive Immunoassay for the Determination of Total Thyroxin in Human Serum,” Journal of Analytical Atomic Spectrometry, Vol. 17, No. 10, 2002, pp. 1304-1307. doi:10.1039/b205623b
[30] Z. A. Quinn, V. I. Baranov, S. D. Tanner and J. L. Wrana, “Simultaneous Determination of Proteins Using an Element-Tagged Immunoassay Coupled with ICP-MS Detection,” Journal of Analytical Atomic Spectrometry, Vol. 17, No. 8, 2002, pp. 892-896. doi:10.1039/b202306g
[31] V. I. Baranov, Z. Quinn, D. R. Bandura and S. D. Tanner, “A Sensitive and Quantitative Element-Tagged Immunoassay with ICPMS Detection,” Analytical Chemistry, Vol. 74, No. 7, 2002, pp. 1629-1636. doi:10.1021/ac0110350
[32] S. Zhang, C. Zhang, Z. Xing and X. Zhang, “Simultaneous Determination of Alpha-Fetoprotein and Free Beta-Human Chorionic Gonadotropin by Element-Tagged Immunoassay with Detection by Inductively Coupled Plasma Mass Spectrometry,” Clinical chemistry, Vol. 50, No. 7, 2004, pp. 1214-1221. doi:10.1373/clinchem.2003.029850
[33] P. A. Whetstone, N. G. Butlin, T. M. Corneillie and C. F. Meares, “Element-Coded Affinity Tags for Peptides and Proteins,” Bioconjugate Chemistry, Vol. 15, No. 1, 2004, pp. 3-6. doi:10.1021/bc034150l
[34] A. Tholey and D. Schaumloffel, “Metal Labeling for Quantitative Protein and Proteome Analysis Using Inductively-Coupled Plasma Mass Spectrometry,” TrAC Trends in Analytical Chemistry, Vol. 29, No. 5, 2010, pp. 399-408. doi:10.1016/j.trac.2010.01.010
[35] S. Crotti, C. Granzotto, W. R. Cairns, P. Cescon and C. Barbante, “Elemental Labeling for the Identification of Proteinaceous-Binding Media in Art Works by ICP-MS,” Journal of Mass Spectrometry, Vol. 46, No. 12, 2011, pp. 1297-1303. doi:10.1002/jms.2021
[36] D. Esteban-Fernandez, C. Scheler and M. W. Linscheid, “Absolute Protein Quantification by LC-ICP-MS Using MeCAT Peptide Labeling,” Analytical and Bioanalytical Chemistry, Vol. 401, No. 12, 2011, pp. 657-666. doi:10.1007/s00216-011-5104-2
[37] D. Iwahata, K. Hirayama and H. Miyano, “A Highly Sensitive Analytical Method for Metal-Labelled Amino Acids by HPLC/ICP-MS,” Journal of Analytical Atomic Spectrometry, Vol. 23, No. 8, 2008, pp. 1063-1067. doi:10.1039/b802862a
[38] B. M. Peek, G. T. Ross, S. W. Edwards, G. J. Meyer, et al., “Synthesis of Redox Derivatives of Lysine and Related Peptides Containing Phenothiazine or Tris(2,2'-bipyridine)ruthenium(II),” International Journal of Peptide and Protein Research, Vol. 38, No. 2, 1991, pp. 114-123. doi:10.1111/j.1399-3011.1991.tb01418.x
[39] D. Iwahata, M. Tsuda, T. Aigaki and H. Miyano, “Quantitative Analysis of Branched Amino Acids in a Single Fruit Fly by LC-ICP-MS after Pre-Column Derivatization with a Metal Tag Reagent,” Journal of Analytical Atomic Spectrometry, Vol. 26, No. 12, 2011, pp. 2461-2466. doi:10.1039/c1ja10212e

  
comments powered by Disqus

Copyright © 2019 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.