Effect of Cyclooxygenase-2 Blockade on Renal Hypertrophy Development during Early Diabetes Mellitus

Abstract

Diabetes mellitus is the leading cause of diabetic nephropathy; the early phase of diabetes is associated with kidney growth and hyperfiltration; several factors modulate these changes, among them, prostaglandins and angiotensin II. Previous studies have shown that cyclooxygenase-2 is implicated in experimental models of diabetes. The aim of this work was to study the effect of celecoxib treatment on renal hypertrophy development in early diabetes mellitus. In our rats with early streptozotocin-induced diabetes there was renal hypertrophy, and increased renal expression of cyclooxygenase-2, AT1 receptor, and transforming growth factor-β1. Treatment with the selective cyclooxygenase-2 inhibitor celecoxib reduced the urinary excretion of prostaglandins such as prostaglandin E2, 6-keto prostaglandin F1α, and thromboxane B2. Kidney hypertrophy was reversed by the treatment, and the renal expression of cyclooxygenase-2, AT1 receptor, and transforming growth factor-β1 decreased. The renoprotective effects of celecoxib were independent of the changes in plasma glucose levels. These results confirm that cyclooxygenase-2 inhibition in rats with streptozotocin-induced diabetes decrease renal hypertrophy; this effect in turn, may be mediated by reduction of the expression of AT1 receptors and transforming growth factor-b1 in the kidney.

Share and Cite:

B. Vázquez-Cruz, J. Rangel-Veladiz, D. Segura-Cobos, P. López-Sánchez, M. Ibarra-Barajas and D. Amato, "Effect of Cyclooxygenase-2 Blockade on Renal Hypertrophy Development during Early Diabetes Mellitus," Pharmacology & Pharmacy, Vol. 4 No. 3, 2013, pp. 288-295. doi: 10.4236/pp.2013.43042.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] N. D. Evcimen and G. L. King, “The Role of Protein Kinase C and the Vascular Complications of Diabetes,” Pharmacological Research, Vol.55, No. 6, 2007, pp. 498510. doi:10.1016/j.phrs.2007.04.016
[2] H. King, R. E. Aubert and W. H. Herman, “Global Burden of Diabetes, 1995-2025: Prevalence, Numerical Estimates, and Projections,” Diabetes Care, Vol. 21, No. 9, 1998, pp. 1414-1431. doi:10.2337/diacare.21.9.1414
[3] The Diabetes Control and Complications Trial Research Group, “The Effect of Intensive Treatment of Diabetes on the Development and Progression of Long-Term Complications in Insulin-Dependent Diabetes Mellitus,” The New England Journal of Medicine, Vol. 329, No. 14, 1993, pp. 977-986. doi:10.1056/NEJM199309303291401
[4] J. T. Shumway and S. R. Gambert, “Diabetic Nephropathy—Pathophysiology and Management,” International Urology and Nephrology, Vol. 34, No. 2, 2002, pp. 257264. doi:10.1023/A:1023244829975
[5] F. N. Ziyadehy, “The Extracellular Matrix in Diabetic Nephropathy,” American Journal of Kidney Diseases, Vol. 22, No. 5, 1993, pp. 736-744.
[6] G. T. O’Bryan and T. H. Hostetter, “The Renal Hemodynamic Basis of Diabetic Nephropathy,” Seminars in Nephrology, Vol. 17, No. 2, 1997, pp. 93-100.
[7] S. C. Thomson, V. Vallon and R. C. Blantz, “Kidney Function in Early Diabetes: The Tubular Hypothesis of Glomerular Filtration,” American Journal of Physiology Renal Physiology, Vol. 286, No. 1, 2004, pp. F8-F15.
[8] M. Bak, K. Thomsen, T. Christiansen and A. Flyvbjerg, “Renal Enlargement Precedes Renal Hyperfiltration in Early Experimental Diabetes in Rats,” Journal of the American Society of Nephrology, Vol. 11, No. 7, 2000, pp. 1287-1292.
[9] F. N. Ziyadeh and G. Wolf, “Pathogenesis of the Podocytopathy and Proteinuria in Diabetic Glomerulopathy,” Current Diabetes Reviews, Vol. 4, No. 1, 2008, pp. 39-45. doi:10.2174/157339908783502370
[10] F. N. Ziyadeh, “Mediators of Diabetic Renal Disease: The case for TGF-β as the Major Mediator,” Journal of the American Society of Nephrology, Vol. 15, No. 15, 2004, pp. S55-S57.
[11] V. Vallon, R. C. Blantz and S. C. Thomson, “Glomerular Hyperfiltration and the Salt Paradox in Early Type 1 Diabetes Mellitus: A Tubulo-Centric View,” Journal of the American Society of Nephrol-ogy, Vol. 14, No. 2, 2003, pp. 530-537. doi:10.1097/01.ASN.0000051700.07403.27
[12] G. Wolf and F. N. Ziyadeh, “Molecular Mechanism of Diabetic Renal Hypertrophy,” Kidney International, Vol. 56, No. 2, 1999, pp. 393-405. doi:10.1046/j.1523-1755.1999.00590.x
[13] J. P. Bonvalet, P. Pradelles and N. Farman, “Segmental Synthesis and Actions of Prostaglandins along the Nephron,” American Journal of Physiology, Vol. 523, No. 3, 1987, pp. F377-F387.
[14] M. Schambelan, S. Blake, J. Sraer, M. Bens, M. P. Nivez and F. Wahbe, “Increased Prostaglandin Production by Glomeruli Isolated from Rats with Streptozotocin-Induced Diabetes Mellitus,” The Journal of Clinical Investigation, Vol. 75, No. 2, 1985, pp. 404-412. doi:10.1172/JCI111714
[15] M. Okumura, M. Imanishi, M. Okamura, M. Hosoi, N. Okada, Y. Konishi, T. Morikawa, K. Miura, T. Nakatani and S. Fujii, “Role for Thromboxane A2 from Glomerular Thrombi in Nephropathy with Type 2 Diabetic Rats,” Life Sciences, Vol. 72, No. 24, 2003, pp. 2695-2705. doi:10.1016/S0024-3205(03)00180-2
[16] A. Yabuki, K. Taniguchi and O. Yamato, “Immunohistochemical Examination of Cyclooxygenase-2 and Renin in a KK-A(y) Mouse Model of Diabetic Nephropathy,” Experimental Animals, Vol. 59, No. 4, 2010, pp. 479-486. doi:10.1538/expanim.59.479
[17] R. Komers, J. N. Lindsley, T. T. Oyama, W. E. Schutz, J. F. Reed, S. L. Mader and S. Anderson, “Immunohistochemical and Functional Correlations of Renal Cyclooxygenase-2 in Experimental Diabetes,” The Journal of Clinical Investigation, Vol. 107, No. 7, 2001, pp. 889-898. doi:10.1172/JCI10228
[18] H. F. Cheng, C. J. Wang, G. W. Moeckel, M. Z. Zhang, J. A. Mckanna and R. C. Harris, “Cyclooxygenase-2 Inhibitor Blocks Expression of Mediators of Renal Injury in a Model of Diabetes and Hypertension,” Kidney International, Vol. 62, No. 3, 2002, pp. 929-939. doi:10.1046/j.1523-1755.2002.00520.x
[19] J. Quilley, M. Santos and P. Pedraza, “Renal Protective Effect of Chronic Inhibition of COX-2 with SC-58236 in Streptozotocin-Diabetic Rats,” American Journal of Physiology Heart Circulation Physiology, Vol. 300, No. 6, 2011, pp. H2316-H2322. doi:10.1152/ajpheart.01259.2010
[20] J. Li, Y. J. Chen and J. Quilley, “Effect of Tempol on Renal Cycloolxygenase Expression and Activity in Experimental Diabetes in the Rat,” Journal of Pharmacology and Experimental Therapeutics, Vol. 314, No. 2, 2005, pp. 818-824. doi:10.1124/jpet.104.076927
[21] C. E. Mogensen, “The Reno-Protective Role of AT1Receptor Blockers,” Journal of Human Hypertension, Vol. 16, Supplement 3, 2002, pp. S52-S58. doi:10.1038/sj.jhh.1001440
[22] M. W. Taal and B. M. Brenner, “Renoprotective Benefits of RAS Inhibition: From ACEI to Angiotensin II Antagonists,” Kidney International, Vol. 57, No. 5, 2000, pp. 1803-1817. doi:10.1046/j.1523-1755.2000.00031.x
[23] E. Villa, A. Rábano, L. M. Ruilope and R. García-Robles, “Effects of Cicaprost and Fosinopril on the Progression of Rat Diabetic Nephropathy,” American Journal of Hypertension, Vol. 10, No. 2, 1997, pp. 202-208. doi:10.1016/S0895-7061(96)00319-6
[24] R. C. Harris, “Interactions between COX-2 and the Renin-Angiotensin System in the Kidney,” Acta Physiologica Scandinavica, Vol. 177, No. 4, 2003, pp. 423427. doi:10.1046/j.1365-201X.2003.01101.x
[25] R. C. Harris, M. Z. Zhang and H. F. Cheng, “Cyclooxygenase-2 and the Renal Renin-Angiotensin System,” Acta Physiologica Scandinavica, Vol. 181, No. 4, 2004, pp. 543-547. doi:10.1111/j.1365-201X.2004.01329.x
[26] P. A. Craven, M. A. Caines and F. R. DeRubertis, “Sequential Alterations in Glomerular Prostaglandins and Thromboxane Synthesis in Di-abetics Rats: Relationship to the Hyperfiltration of Early Diabetes,” Metabolism, Vol. 36, No. 1, 1987, pp. 95-103. doi:10.1016/0026-0495(87)90070-9
[27] K. Sharma, Y. Jin, J. Guo and F. N. Ziyadeh, “Neutralization of TGF-β by Anti-TGF-β Antibody Attenuates Kidney Hypertrophy and the Enhanced Extracellular Matrix Gene Expression in STZ-Induced Diabetic Mice,” Diabetes, Vol. 45, No. 4, 1996, pp. 522-530.
[28] M. V. Rocco, Y. Chen, S. Goldfarb and F. N. Ziyadeh, “Elevated Glucose Stimulates TGF-β Gene Expression and Bioactivity in Proximal Tubule,” Kidney International, Vol. 41, No. 1, 1992, pp. 107-114. doi:10.1038/ki.1992.14
[29] F. N. Ziyadeh, K. Sharma, M. Ericksen and G. Wolf, “Stimulation of Collagen Gene Expression and Protein Synthesis in Murine Mesangial Cells by High Glucose is Mediated by Autocrine Activation of Transforming Growth Factor-β,” The Journal of Clinical Investigation, Vol. 93, No. 2, 1994, pp. 536-542. doi:10.1172/JCI117004
[30] J. Satriano, “Kidney Growth, Hypertrophy and the Unifying Mechanism of Diabetic Complications,” Amino Acids, Vol. 33, No. 2, 2007, pp. 331-339. doi:10.1007/s00726-007-0529-9
[31] S. Chen, B. Jim and F. N. Ziyadeh, “Diabetic Nephropathy and Transforming Growth Factor-β: Transforming Our View of Glomerulosclerosis and Fibrosis Build-Up,” Seminars in Nephrology, Vol. 23, No. 6, 2003, pp. 532543. doi:10.1053/S0270-9295(03)00132-3
[32] J. M. Campistol, P. Iñigo, S. Larios, M. Bescos and F. Oppenheimer, “Role of Transforming Growth Factor-β1 in the Progression of Chronic Allograft Nephropathy,” Nephrology Dialysis Transplantation, Vol. 16, Supplement 1, 2001, pp. 114-116. doi:10.1093/ndt/16.suppl_1.114
[33] K. D. Burns, “Angiotensin II and Its Receptors in the Diabetic Kidney,” American Journal of Kidney Diseases, Vol. 36, No. 3, 2000, pp. 449-469.
[34] D. J. Leehey, A. K. Singh, N. Alavi and R. Singh, “Role of Angiotensin II in Diabetic Nephropathy,” Kidney International Supplement, Vol. 58, Supplement 77, 2000, pp. S93-S98. doi:10.1046/j.1523-1755.2000.07715.x

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.