Novel aspects of tRNA-derived small RNAs with potential impact in infectious diseases

Abstract

The complete understanding of the growing catalog of regulatory non-coding RNAs is going to shed light in different aspects of a wide range of pathogenic mechanisms in human diseases. This review was aimed to highlight recent advances in the small non- coding RNA world that could have implications in the development of new strategies in medical sciences. Among the diverse group of small non-coding RNAs, we highlight the group of tRNA-derived fragments as molecules known for a long time which have recently emerged as novel regulators influencing several aspects of cell biology. We describe here recent advances in the field of tRNA-derived fragments playing key roles in the biology of some infectious agents, including E. coli, A. fumigatus, G. lamblia, Ascaris, T. cruzi, Virus, Prions and a brief overview linking them to cancer biology. Additionally, we focus on the potential implications of these molecules in future biotechnological applications in the development of new biomarkers and as new therapeutic targets.

Share and Cite:

Garcia-Silva, M. , Cabrera-Cabrera, F. , Güida, M. and Cayota, A. (2013) Novel aspects of tRNA-derived small RNAs with potential impact in infectious diseases. Advances in Bioscience and Biotechnology, 4, 17-25. doi: 10.4236/abb.2013.45A002.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] Farazi, T.A., Juranek, S.A. and Tuschl, T. (2008) The growing catalogue of small RNAs and their association with distinct Argonaute/Piwi family members. Development, 135, 1201-1214.
[2] Rother, S. and Meister, G. (2011) Small RNAs derived from longer non-coding RNAs. Biochimie, 93, 19051915.
[3] Haussecker, D., Huang, Y., Lau, A., Parameswaran, P., Fire, A.Z. and Kay, M.A. (2010) Human tRNA-derived small RNAs in the global regulation of RNA silencing. RNA, 16, 673-695. doi:10.1261/rna.2000810
[4] Lee, Y.S., Shibata, Y., Malhotra, A. and Dutta, A. (2009) A novel class of small RNAs: tRNA-derived RNA fragments (tRFs). Genes & Development, 23, 2639-2649
[5] Babiarz, J.E., Ruby, J.G. Wang, Y. Bartel, D.P. and Blelloch, R. (2008) Mouse ES cells express endogenous shRNAs, siRNAs, and other Microprocessor-independent, Dicer-dependent small RNAs. Genes & Development, 22, 2773-2785.
[6] Cole, C., Sobala, A., Lu, C., Thatcher, S.R., Bowman, A., Brown, J.W., Green, P.J., Barton, G.J. and Hutvagner, G. (2009) Filtering of deep sequencing data reveals the existence of abundant Dicer-dependent small RNAs derived from tRNAs. RNA, 15, 2147-2160.
[7] Jochl, C., Rederstorff, M., Hertel, J., Stadler, P.F., Hofacker, I.L., Schrettl, M., Haas, H. and Huttenhofer, A. (2008) Small ncRNA transcriptome analysis from Aspergillus fumigatus suggests a novel mechanism for regulation of protein synthesis. Nucleic Acids Research, 36, 2677-2689. doi:10.1093/nar/gkn123
[8] Pederson, T. (2010) Regulatory RNAs derived from transfer RNA? RNA, 16, 1865-1869. doi:10.1261/rna.2266510
[9] Thompson, D.M. and Parker, R. (2009) Stressing out over tRNA cleavage. Cell, 138, 215-219.
[10] Ogawa, T., Tomita, K., Ueda, T., Watanabe, K., Uozumi, T. and Masaki, H. (1999) A cytotoxic ribonuclease targeting specific transfer RNA anticodons. Science, 283, 2097-2100. doi:10.1126/science.283.5410.2097
[11] Levitz, R., Chapman, D., Amitsur, M., Green, R., Snyder, L. and Kaufmann, G. (1990) The optional E. coli prr locus encodes a latent form of phage T4-induced anticodon nuclease. The EMBO Journal, 9, 1383-1389.
[12] Garcia-Silva, M.R., Frugier, M., Tosar, J.P., CorreaDominguez, A., Ronalte-Alves, L., Parodi-Talice, A., Rovira, C., Robello, C., Goldenberg, S. and Cayota, A. (2010) A population of tRNA-derived small RNAs is actively produced in Trypanosoma cruzi and recruited to specific cytoplasmic granules. Molecular and Biochemical Parasitology, 171, 64-73. doi:10.1016/j.molbiopara.2010.02.003
[13] Haiser, H.J., Karginov, F.V., Hannon, G.J. and Elliot, M.A. (2008) Developmentally regulated cleavage of tRNAs in the bacterium Streptomyces coelicolor. Nucleic Acids Research, 36, 732-741. doi:10.1093/nar/gkm1096
[14] Lee, S.R. and Collins, K. (2005) Starvation-induced cleavage of the tRNA anticodon loop in Tetrahymena thermophila. The Journal of Biological Chemistry, 280, 42744-42749. doi:10.1074/jbc.M510356200
[15] Tomita, K., Ogawa, T., Uozumi, T., Watanabe, K. and Masaki, H. (2000) A cytotoxic ribonuclease which specifically cleaves four isoaccepting arginine tRNAs at their anticodon loops. Proceedings of the National Academy of Sciences of the United State of America, 97, 8278-8283. doi:10.1073/pnas.140213797
[16] Thompson, D.M., Lu, C., Green, P.J. and Parker, R. (2008) tRNA cleavage is a conserved response to oxidative stress in eukaryotes. RNA, 14, 2095-2103. doi:10.1261/rna.1232808
[17] Zhang, S., Sun, L. and Kragler, F. (2009) The phloemdelivered RNA pool contains small noncoding RNAs and interferes with translation. Plant Physiology, 150, 378387.
[18] Liao, J.Y., Ma, L.M., Guo, Y.H., Zhang, Y.C., Zhou, H., Shao, P., Chen, Y.Q. and Qu, L.H. (2010) Deep sequencing of human nuclear and cytoplasmic small RNAs reveals an unexpectedly complex subcellular distribution of miRNAs and tRNA 3’ trailers. PLoS One, 5, e10563.
[19] Sobala, A. and Hutvagner, G. (2011) Transfer RNAderived fragments: Origins, processing, and functions. Wiley Interdisciplinary Reviews: RNA, 2, 853-862.
[20] Emara, M.M., Ivanov, P., Hickman, T., Dawra, N., Tisdale, S., Kedersha, N., Hu, G.F. and Anderson, P. (2010) Angiogenin-induced tRNA-derived stress-induced RNAs promote stress-induced stress granule assembly. The Journal of Biological Chemistry, 285, 10959-10968. doi:10.1074/jbc.M109.077560
[21] Ivanov, P., Emara, M.M., Villen, J., Gygi, S.P. and Anderson, P. (2011) Angiogenin-induced tRNA fragments inhibit translation initiation. Molecular Cell, 43, 613-623.
[22] Yamasaki, S., P. Ivanov, G.F. Hu, and P. Anderson, (2009) Angiogenin cleaves tRNA and promotes stressinduced translational repression. The Journal of Cell Biology, 185, 35-42. doi:10.1083/jcb.200811106
[23] Elbarbary, R.A., Takaku, H., Tamura, M. and Nashimoto, M. (2009) Inhibition of vascular endothelial growth factor expression by TRUE gene silencing. Biochemical and Biophysical Research Communications, 379, 924-927.
[24] Li, Z., Ender, C., Meister, G., Moore, P.S., Chang, Y., and John, B. (2012) Extensive terminal and asymmetric processing of small RNAs from rRNAs, snoRNAs, snRNAs, and tRNAs. Nucleic Acids Research, 40, 67876799.
[25] Garcia Silva, M.R., Tosar, J.P., Frugier, M., Pantano, S., Bonilla, B., Esteban, L., Serra, E., Rovira, C., Robello, C. and Cayota, A. (2010) Cloning, characterization and subcellular localization of a Trypanosoma cruzi argonaute protein defining a new subfamily distinctive of trypanosomatids. Gene, 466, 26-35. doi:10.1016/j.gene.2010.06.012
[26] Bellingham, S.A., Coleman, B.M. and Hill, A.F. (2012) Small RNA deep sequencing reveals a distinct miRNA signature released in exosomes from prion-infected neuronal cells. Nucleic Acids Research, 40, 10937-10949.
[27] Bavaro, M.F. (2012) E. coli O157:H7 and other toxigenic strains: The curse of global food distribution. Current Gastroenterology Reports, 14, 317-323.
[28] Latge, J.P. (1999) Aspergillus fumigatus and aspergillosis. Clinical Microbiology Reviews, 12, 310-350.
[29] Li, Y., Luo, J., Zhou, H., Liao, J.Y., Ma, L.M., Chen, Y.Q. and Qu, L.H. (2008) Stress-induced tRNA-derived RNAs: A novel class of small RNAs in the primitive eukaryote Giardia lamblia. Nucleic Acids Research, 36, 6048-6055.
[30] Adam, R.D. (2001) Biology of Giardia lamblia. Clinical Microbiology Reviews, 14, 447-475.
[31] Ullu, E., Tschudi, C. and Chakraborty, T. (2004) RNA interference in protozoan parasites. Cellular Microbiology, 6, 509-519.
[32] Franzen, O., Arner, E., Ferella, M., Nilsson, D., Respuela, P., Carninci, P., Hayashizaki, Y., Aslund, L., Andersson, B. and Daub, C.O. (2011) The short non-coding transcriptome of the protozoan parasite Trypanosoma cruzi. PLOS Neglected Tropical Diseases, 5, e1283. doi:10.1371/journal.pntd.0001283
[33] Garcia-Silva, M.R., Cabrera-Cabrera, F., Güida, M.C., and Cayota, A. (2012) Hints of tRNA-Derived Small RNAs Role in RNA Silencing Mechanisms. Genes, 3, 603-614. doi:10.3390/genes3040603
[34] Bethony, J., Brooker, S., Albonico, M., Geiger, S.M., Loukas, A., Diemert, D. and Hotez, P.J. (2006) Soiltransmitted helminth infections: Ascariasis, trichuriasis, and hookworm. The Lancet, 367, 1521-1532.
[35] Wang, J., Czech, B., Crunk, A., Wallace, A., Mitreva, M., Hannon, G.J. and Davis, R.E. (2011) Deep small RNA sequencing from the nematode Ascaris reveals conservation, functional diversification, and novel developmental profiles. Genome Research, 21, 1462-1477.
[36] Marquet, R., Isel, C., Ehresmann, C. and Ehresmann, B. (1995) tRNAs as primer of reverse transcriptases. Biochimie, 77, 113-124. doi:10.1016/0300-9084(96)88114-4
[37] Yeung, M.L., Bennasser, Y., Watashi, K., Le, S.Y., Houzet, L. and Jeang, K.T. (2009) Pyrosequencing of small non-coding RNAs in HIV-1 infected cells: Evidence for the processing of a viral-cellular doublestranded RNA hybrid. Nucleic Acids Research, 37, 65756586. doi:10.1093/nar/gkp707
[38] Reese, T.A., Xia, J., Johnson, L.S., Zhou, X., Zhang, W. and Virgin, H.W. (2010) Identification of novel microRNA-like molecules generated from herpesvirus and host tRNA transcripts. Journal of Virology, 84, 10344-10353. doi:10.1128/JVI.00707-10
[39] Wang, Q., Lee, I., Ren, J., Ajay, S.S., Lee, Y.S. and Bao, X. (2013) Identification and functional characterization of tRNA-derived RNA fragments (tRFs) in respiratory syncytial virus infection. Molecular Therapy, 21, 368379. doi:10.1038/mt.2012.237
[40] Thery, C., Zitvogel, L. and Amigorena, S. (2002) Exosomes: Composition, biogenesis and function. Nature Reviews Immunology, 2, 569-579.
[41] Valadi, H., Ekstrom, K., Bossios, A., Sjostrand, M., Lee, J.J. and Lotvall, J.O. (2007) Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells. Nature Cell Biology, 9, 654-659. doi:10.1038/ncb1596
[42] Aguzzi, A. and Heikenwalder, M. (2006) Pathogenesis of prion diseases: Current status and future outlook. Nature Reviews Microbiology, 4, 765-775. doi:10.1038/nrmicro1492
[43] Martens-Uzunova, E.S., Olvedy, M. and Jenster, G. (2013) Beyond microRNA—Novel RNAs derived from small non-coding RNA and their implication in cancer. Cancer Letters, (in Press). doi:10.1016/j.canlet.2012.11.058
[44] Kawaji, H., Nakamura, M., Takahashi, Y., Sandelin, A., Katayama, S., Fukuda, S., Daub, C.O., Kai, C., Kawai, J., Yasuda, J., Carninci, P. and Hayashizaki, Y. (2008) Hidden layers of human small RNAs. BMC Genomics, 9, 157. doi:10.1186/1471-2164-9-157
[45] Saikia, M., Krokowski, D., Guan, B.J., Ivanov, P., Parisien, M., Hu, G.F., Anderson, P., Pan, T. and Hatzoglou, M. (2012) Genome-wide identification and quantitative analysis of cleaved tRNA fragments induced by cellular stress. The Journal of Biological Chemistry, 287, 4270842725. doi:10.1074/jbc.M112.371799
[46] Habu, Y., Miyano-Kurosaki, N., Kitano, M., Endo, Y., Yukita, M., Ohira, S., Takaku, H. and Nashimoto M. (2005) Inhibition of HIV-1 gene expression by retroviral vector-mediated small-guide RNAs that direct specific RNA cleavage by tRNase ZL. Nucleic Acids Research, 33, 235-243. doi:10.1093/nar/gki164
[47] Nakashima, A., Takaku, H., Shibata, H.S., Negishi, Y., Takagi, M., Tamura, M. and Nashimoto, M. (2007) Gene silencing by the tRNA maturase tRNase ZL under the direction of small-guide RNA. Gene Therapy, 14, 78-85. doi:10.1038/sj.gt.3302841
[48] Nashimoto, M. (1996) Specific cleavage of target RNAs from HIV-1 with 5’ half tRNA by mammalian tRNA 3’ processing endoribonuclease. RNA, 2, 523-524.
[49] Takahashi, M., Elbarbary, R.A., Abe, M., Sato, M., Yoshida, T., Yamada, Y., Tamura, M. and Nashimoto, M. (2012) Elimination of specific miRNAs by naked 14-nt sgRNAs. PLoS ONE, 7, e38496. doi:10.1371/journal.pone.0038496
[50] Scherer, L.J., Frank, R. and Rossi, J.J. (2007) Optimization and characterization of tRNA-shRNA expression constructs. Nucleic Acids Research, 35, 2620-2628. doi:10.1093/nar/gkm103
[51] Maute, R.L., Schneider, C., Sumazin, P., Holmes, A., Califano, A., Basso, K. and Dalla-Favera, R. (2013) tRNA-derived microRNA modulates proliferation and the DNA damage response and is down-regulated in B cell lymphoma. Proceedings of the National Academy of Sciences of the United State of America, 110, 1404-1409.
[52] Xia, J., Joyce, C.E., Bowcock, A.M. and Zhang, W. (2013) Noncanonical microRNAs and endogenous siRNAs in normal and psoriatic human skin. Human Molecular Genetics, 22, 737-748. doi:10.1093/hmg/dds481
[53] Cortez, M.A., Bueso-Ramos, C., Ferdin, J., Lopez-Berestein, G., Sood, A.K. and Calin, G.A. (2011) MicroRNAs in body fluids—The mix of hormones and biomarkers. Nature Reviews Clinical Oncology, 8, 467-477. doi:10.1038/nrclinonc.2011.76
[54] Shah, M.Y. and Calin, G.A. (2013) The mix of two worlds: Non-coding RNAs and hormones. Nucleic Acid Therapeutics, 23, 2-8.
[55] Nolte-’t Hoen, E.N.M., Buermans, H.P.J., Waasdorp, M., Stoorvogel, W., Wauben, M.H.M. and ’t Hoen, P.A.C. (2012) Deep sequencing of RNA from immune cell-derived vesicles uncovers the selective incorporation of small non-coding RNA biotypes with potential regulatory functions. Nucleic Acids Research, 40, 9272-9285.
[56] Nashimoto, M. and Kaspar, R. (1997) Specific cleavage of a target RNA from HIV-1 by mammalian tRNA 3’ processing endoribonuclease directed by an RNA heptamer. Nucleic Acids Symposium Series, 36, 22-25. doi:10.1093/nar/gks658

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.