A spectroscopic study of the interaction of the antioxidant naringin with bovine serum albumin


The interaction of naringin with bovine serum albumin has been performed using fluorescence, circular dichroism and fourier transform infrared spectroscopy in 20 mM phosphate buffer of pH 7.0 as well as molecular docking studies. The changes in enthalpy (ΔH°) and entropy (ΔS°) of the interaction were found to be +18.73 kJ/mol and +143.64 J mol-1 K-1 respectively, indicating that the interaction of naringin with bovine serum albumin occurred mainly through hydrophobic interactions. Negative values of free energy change (ΔG°) at different temperatures point toward the spontaneity of the interaction. Circular dichroism studies reveal that the helical content of bovine serum albumin decreased after interaction with naringin. According to the F?rster non-radiative energy transfer theory the distance between Trp 213 residue and naringin was found to be 3.25 nm. Displacement studies suggest that naringin binds to site 1 (subdomain IIA) of bovine serum albumin (BSA) which was also substantiated by molecular docking studies.

Share and Cite:

Roy, A. , Tripathy, D. , Chatterjee, A. and Dasgupta, S. (2010) A spectroscopic study of the interaction of the antioxidant naringin with bovine serum albumin. Journal of Biophysical Chemistry, 1, 141-152. doi: 10.4236/jbpc.2010.13017.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] Spencer, J.P.E. (2008) Flavonoids: Modulators of brain function? British Journal of Nutrition, 99, ES60- ES77.
[2] Han, S.S. and You, I.J. (1988) Studies on antimicrobial activities and safety of natural naringin. Korean Journal of Mycology, 16, 33-40.
[3] Cushnie, T.P.T. and Lamb, A.J. (2005) Antimicrobial activity of flavanoids. International Journal of Antimicro- bial Agents, 26, 343-356.
[4] Yamamoto, Y. and Gaynor, R.B. (2001) Therapeutic potential of inhibition of the NF-κB pathway in the treatment of inflammation and cancer. Journal of Clinical Investigation, 107, 135-142.
[5] Duthic, G.G., Duthic, S.J. and Kyle, J.A.M. (2000) Plant polyphenols in cancer and heart disease: Implications as nutritional antioxidants. Nutrition Research Reviews, 13, 79-106.
[6] Francis, R., Shetty, T.K. and Bhattacharya, R.K. (1989) Modulating effect of plant flavonoids on the mutagenicity of N-methyl-N'-nitro-N-nitrosoguanidine. Carcinogenesis, 10, 1953-1955.
[7] Bear, W.L. and Teel, R.W. (2000) Effect of citrus phytochemicals on liver and lung cytochrome P450 activity and on the in vitro metabolism of the tobacco- specific nitrosamine NKP. Anticancer Research, 20, 3323- 3329.
[8] Jovanovic, S.V., Steenken, S., Tosic, M., Marjanovic, B. and Simic, M.G. (1994) Flavonoids as antioxidants. Journal of the American Chemical Society, 116, 4846-4851.
[9] Jagetia, G.C., Venkatesha, V.A. and Reddy, T.K. (2003) Naringin, a citrus flavonone, protects against radiation- induced chromosome damage in mouse bone marrow. Mutagenesis, 18, 337-343.
[10] Schindler, R. and Mentlein, R. (2006) Flavonoids and vitamin E reduce the release of the angiogenic peptide vascular endothelial growth factor from human tumor cells. Journal of Nutrition, 136, 1477-1482.
[11] Martin, M.J., Marhuenda, E., Perez-Guerrero, C. and Franco, J.M. (1994) Antiulcer effect of naringin on gastric lesions induced by ethanol in rats. Pharmacology, 49, 144- 150.
[12] Ueng, Y.F., Chang, Y.L., Oda, Y., Park, S.S., Liao, J.F., Lin, M.F. and Chen, C.F. (1999) In vitro and in vivo effects of naringin on cytochrome p-450-depenent monooxygenase in mouse liver. Life Sciences, 65, 2591- 2602.
[13] Lee, H., Jeong, T.S., Choi, Y.K., Hyun, B.H., Oh, G.T., Kim, E.H., Kim, J.R., Han, J.I. and Bok, S.H. (2001) Anti-atherogenic effect of citrus flavonoids, naringin and naringenin, associated with hepatic ACAT and aortic VCAM-1 and MCP-1 in high cholesterol-fed rabbits. Biochemical And Biophysical Research Communications, 284, 681-688.
[14] da Silva, R.R., de Oliveira, T.T., Nagem, T.J., Pinto, A.S., Albino, L.F., de Almeida, M.R., de Moraes, G.H. and Pinto, J.G. (2001) Hypocholesterolemic effect of naringin and rutin flavonoids. Archivos Latinoamericanos de Nutrición, 51, 258-264.
[15] Gordon, P.B., Holen, I. and Seglen, P.O. (1995) Protection, by naringin and some other flavonoids, of hepatocytic autophagy and endocytosis against inhibition by okadaic acid. Journal of Biological Chemistry, 270, 5830-5838.
[16] Kanno, S., Shouji, A., Asou, K. and Ishikawa, M. (2003) Effect of naringin on hydrogen peroxide-induced cytoto- xicity and apoptosis in P 388 cells. Journal of Pharma- cological Sciences, 92, 166-170.
[17] Zhang, H., Wong, C.W., Coville, P.F. and Wanwimolruk, S. (2000) Effect of the grapefruit flavonoid naringin on pharmacokinetics of quinine in rats. Drug Metabolism and Drug Interactions, 17, 351-363.
[18] Colmenarejo, G. (2003) In silico prediction of drug- binding strengths to human serum albumin. Medicinal Research Reviews, 23, 275-301.
[19] Sugio, S., Kashima, A., Mochizuki, S., Noda, M. and Kobayashi, K. (1999) Crystal structure of human serum albumin at 2.5 ? resolution. Protein Engeering, 12, 439- 446.
[20] Molla, A., Vasavanonda, S., Kumar, G., Sham, H.L., Johnson, M., Grabowski, B., Denissen, J.F., Kohlbrenner, W., Plattner, J.J., Leonard, J.M., Norbeck, D.W. and Kempf, D.J. (1998) Human serum attenuates the activity of protease inhibitors toward wild-type and mutant human deficiency virus. Virology, 250, 255-262.
[21] Carter, C. and Ho, J.X. (1994) Structure of serum albumin. Advances in Protein Chemistry, 45, 153-203.
[22] Carter, C., Chang, B., Ho, J.X., Keeling, K. and Krish- nasami, Z. (1994) Preliminary crystallographic studies of four crystal forms of serum albumin. European Journal of Biochemistry, 226, 1049-1052.
[23] Brown, K.F. and Crooks, M.J. (1976) Displacement of tolbutamide, glibencalmide and chroproparmide from serum albumin by anionic drugs. Biochemical Pharma- cology, 25, 1175-1178.
[24] Peters, T.Jr. (1985) Serum albumin. Advances in Protein Chemistry, 37, 161-245.
[25] Kragh-Hansen, U. (1981) Molecular aspects of ligand binding to serum albumin. Pharmacological Reviews, 33, 17-53.
[26] Zhang, G., Wang, A., Jiang, T. and Guo, J. (2008) Interaction of the irisflorentin with bovine serum albumin: A fluorescence quenching study. Journal of Molecular Structure, 891, 93-97.
[27] Shang, L., Jiang, X. and Dong, S. (2006) In vitro study on the binding of neutral red to bovine serum albumin by molecular spectroscopy. Journal of Photochemistry and Photobiology A, 184, 93-97.
[28] Zhou, N., Liang, Y.Z. and Wang, P. (2007) 18β-Glycyr- rhetinic acid interaction with bovine serum albumin. Journal of Photochemistry and Photobiology A, 185, 271-276.
[29] Wang, Y.P., Wei, Y.L. and Dong, C. (2006) Study on the interaction of 3,3-bis(4-hydroxy-1-naphthyl)-phthalide with bovine serum albumin by fluorescence spectroscopy,” Journal of Photochemistry and Photobiology A, 177, 6-11.
[30] Bose, B. and Dube, A. (2006) Interaction of chlorin p6 with bovine serum albumin and photodynamic oxidation of protein. Journal of Photochemistry and Photobiology B, 85, 49-55.
[31] He, Y., Wang, Y.W., Tang, L.F., Liu, H., Chen, W., Zheng, Z.L. and Zou, G.L. (2007) Binding of puerarin to human serum albumin: A spectroscopic analysis and molecular docking. Journal of Fluorescence, 18, 433-442.
[32] Sahoo, K., Ghosh, K.S. and Dasgupta, S. (2008) Investigating the binding of curcumin derivatives to bovine serum albumin. Biophysical Chemistry, 132, 81-88.
[33] Sahoo, B.K., Ghosh, K.S. and Dasgupta, S. (2009) Molecular interactions of isoxazolcurcumin with human serum albumin: Spectroscopic and molecular modeling studies. Biopolymers, 91, 108-119.
[34] Ghosh, K.S., Sahoo, B.K., Jana, D. and Dasgupta, S. (2008) Studies on the interaction of copper complexes of (-)- epicatechin gallate and (-)-epigallocatechin gallate with calf thymus DNA. Journal of Inorganic Biochemistry, 102, 1711-1718.
[35] Maiti, T.K., Ghosh, K.S. and Dasgupta, S. (2006) Inter- action of (-)-epigallocatechin-3-gallate with human serum albumin: Fluorescence, fourier transform infrared, circular dichroism, and docking studies. Proteins, 64, 355-362.
[36] Rieutord, A., Bourget, P., Troche, G. and Zazzo, J.F. (1995) In vitro study of the protein binding of fusidic acid: a contribution to the comprehension of its pharmacokinetics behaviour. International Journal of Pharmaceutics, 1, 57- 64.
[37] Borga, O. and Borga, B. (1997) Serum protein binding of the nonsteroidal antiinflammatory drugs: A comparative study. Journal of Pharmaceutics and Biopharmaceutics, 25, 63-77.
[38] Zhang, Y., Li, Y., Dong, L., Li, J., He, W., Chen, X. and Hu, Z. (2008) Investigation of the interaction between naringin and human serum albumin. Journal of Molecular Structure, Vol. 875, March, pp. 1-8.
[39] Sun, Y., Zhang, H., Sun, Y., Zhang, Y., Liu, H., Cheng, J., Bi, S. and Zhang, H. (2010) Study of interaction between protein and main active components in citrus aurantium L. by optical spectroscopy. Journal of Luminescence, 130, 270-279.
[40] Pace, N., Vajdos, F., Fee, L., Grimsley, G. and Gray, T. (1995) How to measure and predict the molar absorption coefficient of a protein. Protein Science, 4, 2411-2423.
[41] Perry, J.L., Goldsmith, M.R., Williams, T.R., Radack, K.P., Christensen, T., Gorham, J., Pasquinelli, M.A., Toone, E.J., Beratan, D.N. and Simon, J.D. (2006) Binding of warfarin influences the acid-base equilibrium of H242 in sudlow site I of human serum albumin. Photochemistry and Pho- tobiology, 82, 1365-1369.
[42] Du, L., Liu, X., Huang, W. and Wang, E. (2006) A study on the interaction between ibuprofen and bilayer lipid membrane. Electrochimica Acta, 51, 5754-5760.
[43] Tang, J.H., Luan, F. and Chen, X.G. (2006) Binding analysis of glycyrrhetinic acid to human serum albumin: Fluorescence spectroscopy, FTIR, and molecular modeling. Bioorganic & Medicinal Chemistry, 14, 3210-3217.
[44] Lakowicz, J.R. (2006) Principles of fluorescence spec- troscopy. 3rd Edition, Springer, New York.
[45] Gelamo, L., Silva, C.H.T.P., Imasato, H. and Tabak, M. (2002) Interaction of bovine (BSA) and human (HSA) serum albumins with ionic surfactants: spectroscopy and modeling. Biochimica et Biophysica Acta, 1594, 84-99.
[46] Jiang, M., Xie, M.X., Zheng, D., Liu, Y., Li, X.Y. and Cheng, X. (2004) Spectroscopic studies on the interaction of cinnamic acid and its hydroxyl derivatives with human serum albumin. Journal of Molecular Structure, 692, 71- 80.
[47] Ross, P.D. and Subramanian, S. (1981) Thermodynamics of protein association reactions: Forces contributing to stability. Biochemistry, 20, 3096-3102.
[48] Miller, J.N. (1979) Recent advances in molecular lumine- scence analysis. Proceedings of the Analytical Division of the Chemical Society, 16, 203-208.
[49] Mahesha, H.G., Singh, S.A., Srinivasan, N. and Rao, A.G.A. (2006) A spectroscopic study of the interaction of isoflavones with human serum albumin. FEBS Journal, Vol. 273, February, pp. 451-467.
[50] Weber, G. and Young, L.B. (1964) Fragmentation of bovine serum albumin by pepsin I. The origin of the acid expansion of the albumin molecule. Journal of Biological Chemistry, 239, 1415-1423.
[51] Heller, P. and Greenstock, C.L. (1994) Fluorescence lifetime analysis of DNA intercalated ethidium bromide and quenching by free dye. Biophysical Chemistry, 50, 305-312.
[52] Chen, Y.H., Yang, J.T. and Martinez, H.M. (1972) Determination of the secondary structures of proteins by circular dichroism and optical rotary dispersion. Bioche- mistry, 11, 4120-4131.
[53] Hong, G., Lei, L., Kong, Q., Chen, X. and Hu, Z. (2004) The study on the interaction between human serum albumin and a new reagent with antitumour activity by spectrophotometric methods. Journal of Photochemistry and Photobiology A, 167, 213-221.
[54] Byler, M. and Susi, H. (1986) Examination of the secon- dary structure of proteins by deconvolved FTIR spectra. Biopolymers, 25, 469-487.
[55] Berman, M., Westbrook, J., Feng, Z., Gilliland, G., Bhat, T.N., Weissig, H., Shindyalov, I.N. and Bourne, P.E. (2000) The protein data bank. Nucleic Acids Research, 28, 235-242.
[56] Karplus, K., Katzman, S., Shackleford, G., Koeva, M., Draper, J., Barnes, B., Soriano, M. and Hughey, R. (2005) SAM-T04: What is new in protein-structure prediction for CASP6. Proteins, 61, 135-142.
[57] Karchin, R., Cline, M. and Karplus, K. (2004) Evaluation of local structure alphabets based on residue burial. Proteins, 55, 508-518.
[58] Karchin, R., Cline, M., Mandel-Gutfreund, Y. and Karplus, K. (2003) Hidden Markov models that use predicted local structure for fold recognition: Alphabets of protein back- bone geometry. Proteins, 51, 504-514.
[59] Karchin, R., Draper, J., Casper, J., Mandel-Gutfreund, Y., Diekhans, M. and Hughey, R. (2003) Combining local structure, fold-recognition, and new-fold methods for pro- tein structure prediction. Proteins, 53, 491-496.
[60] Karplus, K., Karchin, R., Barrett, C., Tu, S., Cline, M., Diekhans, M., Grate, L., Casper, J. and Hughey, R. (2002) What is the value added by human intervention in protein structure prediction? Proteins, 45, 86-91.
[61] Delano, W.L. (2004) The PyMOL molecular graphics system. DeLano Scientific, San Carlos, USA.http://pymol.sourceforge.net/
[62] Hubbard, S.J. and Thornton, J.M. (1993) ‘NACCESS’, computer program. Department of Biochemistry and Molecular Biology, University College, London.
[63] Bi, S.Y., Song, D.Q., Tian, Y., Zhou, X., Liu, Z.Y. and Zhang, H.Q. (2005) Molecular spectroscopic study on the interaction of tetracyclines with serum albumins. Spectrochimica Acta, Part A, 61, 629-636.
[64] Chen,G., Huang, X.Z., Xu, J.G., Zheng, Z.Z. and Wang, Z.B. (1990) Methods of fluorescence analysis. 2nd Edition, Science Press, Beijing.
[65] Matulis, D. and Lovrien, R. (1998) 1-Anilino-8-naphtha- lene sulfonate anion-protein binding depends primarily on ion pair formation. Biophysical Journal, 74, 422-429.
[66] Luis, B., Silvia, C.K., Felipe, A., Marco, A.S., Patricio, S. and Gerardo, D.F. (1996) Two distinguishable fluorescent modes of 1-anilino-8-naphthalenesulfonate bound to human albumin. Journal of Fluorescence, 6, 33-40.
[67] Cui, L., Fan, J., Li, J.P. and Hu, Z. (2004) Interactions between 1-benzoyl-4-p-chlorophenyl thiosemicarbazide and serum albumin: Investigation by fluorescence spec- troscopy. Bioorganic & Medicinal Chemistry, 12, 151-157.
[68] Susi, H. and Byler, D.M. (1986) Resolution-enhanced fourier transform infrared spectroscopy of enzymes. Methods in Enzymology, 130, 290-311.
[69] Krimm, S. and Bandekar, J. (1986) Vibrational spec- troscopy and conformation of peptides, polypeptides and proteins. Advances in Protein Chemistry, 38, 181-364.

Copyright © 2023 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.