Theory of Seebeck Coefficient in Multi-Walled Carbon Nanotubes


Based on the idea that different temperatures generate different conduction electron densities and the resulting carrier diffusion generates the thermal electromotive force (emf), a new formula for the Seebeck coefficient (thermopower) S is obtained: S=(2/3)ln2(qn)-1εFkBD0, where kB is the Boltzmann constant, and q, n, εF, D0 are charge, carrier density, Fermi energy, density of states at εF, respectively. Ohmic and Seebeck currents are fundamentally different in nature, and hence, cause significantly different behaviors. For example, the Seebeck coefficient S in copper (Cu) is positive, while the Hall coefficient is negative. In general, the Einstein relation between the conductivity and the diffusion coefficient does not hold for a multicarrier metal. Multi-walled carbon nanotubes are superconductors. The Seebeck coefficient S is shown to be proportional to the temperature T above the superconducting temperature Tc based on the model of Cooper pairs as carriers. The S follows a temperature behavior, , where Tg = constant, at the lowest temperatures.

Share and Cite:

S. Fujita, J. McNabb III and A. Suzuki, "Theory of Seebeck Coefficient in Multi-Walled Carbon Nanotubes," Journal of Modern Physics, Vol. 4 No. 5, 2013, pp. 628-637. doi: 10.4236/jmp.2013.45091.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] L. Lu, N. Kang, W. J. Kong, D. L. Zhang, Z. W. Pan and S. S. Xie, Physica E, Vol. 18, 2003, pp. 214-215. doi:10.1016/S1386-9477(02)00971-2
[2] N. Kang, L. Lu, W. J. Kong, J. S. Hu, W. Yi, Y. P. Wang, D. L. Zhang, Z. W. Pan and S. S. Xie, Physical Review B, Vol. 67, 2003, pp. 033404-033408. doi:10.1103/PhysRevB.67.033404
[3] S. Fujita, K. Ito and S. Godoy, “Quantum Theory of Conducting Matter. Superconductivity,” Springer, New York, 2009, pp. 77-79. doi:10.1007/978-0-387-88211-6
[4] P. L. Rossiter and J. Bass, “Encyclopedia of Applied Physics,” Wiley-VCH Publ., Berlin, 1994, pp. 163-197.
[5] N. W. Ashcroft and N. D. Mermin, “Solid State Physics,” Saunders, Philadelphia, 1976, pp. 46-47, 217-218, 256-258, 290-293.
[6] S. Fujita, H.-C. Ho and Y. Okamura, International Journal of Modern Physics B, Vol. 14, 2000, pp. 2231-2240. doi:10.1142/S0217979200002107
[7] D. J. Roaf, Philosophical Transactions of the Royal Society A, Vol. 255, 1962, pp. 135-152. doi:10.1098/rsta.1962.0012
[8] D. Schonberg, Philosophical Transactions of the Royal Society A, Vol. 255, 1962, pp. 85-133. doi:10.1098/rsta.1962.0011
[9] D. Schonberg and A. V. Gold, “Physics of Metals 1,” In: J. M. Ziman, Ed., Electrons, Cambridge University Press, Cambridge, 1969, p. 112. doi:10.1038/363605a0
[10] S. Iijima, Nature, Vol. 354, 1991, pp. 56-58. doi:10.1038/354056a0
[11] S. Iijima and T. Ichihashi, Nature, Vol. 363, 1993, pp. 603-605. doi:10.1038/363603a0
[12] D. S. Bethune, C. H. Kiang, M. S. de Vries, G. Gorman, R. Savoy, J. Vazquez and R. Beyers, Nature, Vol. 363, 1993, pp. 605-607.
[13] S. Fujita and A. Suzuki, Journal of Applied Physics, Vol. 107, 2010, pp. 013711-0137115. doi:10.1063/1.3280035
[14] S. Fujita, Y. Takato and A. Suzuki, Modern Physics Letters B, Vol. 25, 2011, pp. 223-242. doi:10.1142/S0217984911025675

Copyright © 2021 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.