Possible Mosquito Control by Silver Nanoparticles Synthesized by Soil Fungus (Aspergillus niger 2587)


Here, we have synthesized the silver nanoparticles (AgNPs) by using the soil fungus Aspergillus niger 2587. The results recorded from UV-vis spectrophotometer and transmission electron microscopy (TEM) support the biosynthesis and characterization of AgNPs. The synthesized silver nanoparticles have also been tested against the larvae and pupae of Anopheles stephensi, Culex quinquefasciatus and Aedes aegypti. The efficacy test was performed at different concentrations for a period of different hours by the probit analysis. The larvae of Cx. quinquefasciatus have shown the 100% mortality to the synthesized AgNPs after 1 h of exposure, while the larvae of An. stephensi and Ae. aegypti were found less susceptible to the synthesized AgNPs. The pupa of Ae. aegypti has shown the efficacy LC50 4, LC90 12 and LC99 19 ppm after 2 h of exposure of the synthesized AgNPs, while, the pupae of Cx. quinquefasciatus and An. stephensi were found less susceptible to the synthesized AgNPs. By this approach, it is suggestive that this rapid synthesis of nanoparticles would be proper for developing a biological process for mosquito control.

Share and Cite:

Soni, N. and Prakash, S. (2013) Possible Mosquito Control by Silver Nanoparticles Synthesized by Soil Fungus (Aspergillus niger 2587). Advances in Nanoparticles, 2, 125-132. doi: 10.4236/anp.2013.22021.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] World Health Organization, “WHO 10 Facts on Malaria,” 2012. http://www.who.int/features/factfiles/malaria/en/index.html
[2] World Health Organization, “Lymphatic Filariasis,” 2012. http://www.who.int/mediacentre/factsheets/fs102/en/
[3] World Health Organization, “Dengue and severe dengue,” 2012. http://www.who.int/mediacentre/factsheets/fs117/en/
[4] M. C. Wirth, W. E. Walton and B. A. Federici, “Evaluation of Resistance to the Bascillus sphaericus Bin Toxin is Phenotypically Masked by Combination with the Mosquitocidal Proteins of Bascillus thuringienesis Subspecies israelensis,” Environmental Microbiology, Vol. 12, No. 5, 2010, pp. 1154-1160. doi:10.1111/j.1462-2920.2010.02156.x
[5] M. Govindrajan, A. Jebamesan and D. Reetha, “Larvicidal Effect of Extracellular Secondary Metabolites of Different Fungi against the Mosquito, Culex quinquefasciatus Say,” Tropical Biomedicine, Vol. 22, No. 1, 2005, pp. 1-3.
[6] S. Namita and P. Soam, “Effect of Chrysosporium kera tinophilum Metabolites against Culex quinquefasciatus after Chromatographic Purification,” Parasitology Re search, Vol. 107, No. 6, 2010, pp. 1329-1336. doi:10.1007/s00436-010-2003-y
[7] S. Prakash, S. Gavendra, S. Namita and S. Sweta, “Pathogenicity of Fusarium oxysporum against the Larvae of Culex quinquefasciatus (Say) and Anopheles stephensi (Liston) in Laboratory,” Parasitology Research, Vol. 107, No. 3, 2010, pp. 651-655. doi:10.1007/s00436-010-1911-1
[8] S. Namita and P. Soam, “Aspergillus niger Metabolites Efficacies against the Mosquito Larval (Culex quinquefasciatus, Anopheles stephensi and Aedes aegypti) Population after Column Chromatography,” American Journal of Microbiology, Vol. 2, No. 1, 2011, pp. 15-20. doi:10.3844/ajmsp.2011.15.20
[9] S. Namita and P.Soam, “Larvicidal Effect of Verticillium lecanii Metabolites on Culex quinquefasciatus and Aedes aegypti Larvae,” Asian Pacific Journal of Tropical Disease, Vol. 2, No. 3, 2012, pp. 220-224. doi:10.1016/S2222-1808(12)60050-4
[10] P. Singh and R. B. Raja, “Biological Synthesis and Characterization of Silver Nanoparticles Using the Fungus Trichoderma harzianum,” Asian Journal of Experimental Biology and Science, Vol. 2, No. 4, 2011, pp. 600-605.
[11] K. Vahabi, G. A. Mansoori and S. Karimi, “Biosynthesis of Silver Nanoparticles by Fungus Trichoderma ressei,” Inscience Journal, Vol. 1, No. 1, 2011, pp. 65-79. doi:10.5640/insc.010165
[12] H. B. Patil, S. V. Borse, D. R. Patil, U. K. Patil and H. M. Patil, “Synthesis of Silver Nanoparticles by Microbial Method and Their Characterization,” Archives of Physics Research, Vol. 2, No. 3, 2011, pp. 153-158.
[13] G. Li, D. He, Y. Qian, B. Guan, S. Gao, Y. Cui, K. Yokoyama and L. Wang, “Fungus Mediated Green Synthesis of Silver Nanoparticles Using Aspergillus terreus,” International Journal of Molecular Sciences, Vol. 13, No. 1, 2012, pp. 466-476. doi:10.3390/ijms13010466
[14] T. S. Anitha and P. Palanivelu, “Synthesis and Structural Characterization of Polydisperse Silver and Multidisha ped Gold Nanoparticles Using Fusarium Oxysporum MT CC 284,” Digest Journal of Nanomateials and Biostructure, Vol. 6, No. 4, 2011, pp. 1587-1595.
[15] N. Soni and S. Prakash, “Factors Affecting the Geometry of Silver Nanoparticles Synthesis in Chrysosporium tro picum and Fusarium oxysporum,” American Journal of Nanotechnology, Vol. 2, No. 1, 2011, pp. 112-121.
[16] R. B. Salunkhe, S. V. Patil, C. D. Patil and B. K. Salunkhe, “Larvicidal Potential of Silver Nanoparticles Synthesized Using Fungus Cochliobolus lunatus against Aedes aegypti (Linnaeus, 1762) and Anopheles stephensi Liston (Diptera; Culicidae),” Parasitology Research, Vol. 109, No. 3, 2011, pp. 823-831. doi:10.1007/s00436-011-2328-1
[17] N. Soni and S. Prakash, “Efficacy of Fungus Mediated Silver and Gold Nanoparticles against Aedes aegypti Larvae,” Parasitology Research, Vol. 110, No. 1, 2012, pp. 175-184. doi:10.1007/s00436-011-2467-4
[18] N. Soni and S. Prakash, “Entomopathogenic Fungus Generated Nanoparticles for Enhancement of Efficacy in Culex quinquefasciatus and Anopheles stephensi,” Asian Pacific Journal of Tropical Disease, Vol. 2, No. 2, 2012, pp. S356-S361. doi:10.1016/S2222-1808(12)60181-9
[19] N. Soni and S. Prakash, “Fungal Mediated Nano Silver: An Effective Adulticide against Mosquito,” Parasitology Research, Vol. 111, No. 5, 2012, pp. 2091-2098.doi:10.1007/s00436-012-3056-x
[20] J. M. Gardner and J. S. Pillai, “Tolypocladium cylindrosporum (Deuteromycotina: Moniliales), a Fungal Pathogen of the Mosquito Aedes australis,” Mycopatholigia, Vol. 97, No. 2, 1987, pp. 77-82. doi:10.1007/BF00436841
[21] World Health Organization, “Guidelines for Laboratory and Field Testing of Mosquito Larvicides,” 2005.
[22] D. J. Finney, “Probit Analysis,” 3rd Edition, Canbridge University Press, Cambridge, 1971.
[23] W. S. Abbott, “A Method of Computing the Effectiveness of an Insecticide,” Journal of Economical Entomology, Vol. 18, No. 1, 1925, pp. 265-266.
[24] P. Mukherjee, A. Ahmad, D. Mandal, S. Senapati, S. R. Sainkar, M. I. Khan, R. Parishcha, P. V. Ajaykumar, M. Alam, R. Kumar and M. Sastry, “Fungus-Mediated Synthesis of Silver Nanoparticles and Their Immobilization in the Mycelia Matrix: A Novel Biological Approach to Nanoparticle Synthesis,” Nano Letters, Vol. 1, No. 10, 2001, pp. 515-519. doi:10.1021/nl0155274
[25] T. Santhoshkumar, A. A. Rahuman, G. Rajakumar, S. Marimuthu, A. Bagavan, C. Jayaseelan, A. A. Zahir, G. Elango and C. Kamaraj, “Synthesis of Silver Nanoparticles Using Nelumbo nucifera Leaf Extract and Its Larvicidal Activity against Malaria and Filariasis Vectors,” Parasitology Research, Vol. 108, No. 3, 2011, pp. 693-702. doi:10.1007/s00436-010-2115-4
[26] S. Marimuthu, A. A. Rahuman, G. Rajakumar, T. Santhoshkumar, A. V. Kirthi, C. Jayaseelan, A. Bagavan, A. A. Zahir, G. Elango and C. Kamaraj, “Evaluation of Green Synthesized Green Silver Nanoparticles against Parasites,” Parasitology Research, Vol. 108, No. 6, 2011, pp. 1541-1549. doi:10.1007/s00436-010-2212-4
[27] G. Rajkumar and A. A. Rahuman, “Larvicidal Activity of Synthesized Silver Nanoparticles Using Eclipta prostrata Leaf Extract against Filariasis and Malaria Vector,” Acta Tropica, Vol. 118, No. 3, 2011, pp. 196-203. doi:10.1016/j.actatropica.2011.03.003
[28] N. K. Arjunan, K. Murugan, C. Rejeeth, P. Madhiyazhagan and R. Donald, “Green Synthesis of Silver Nanoparticles for the Control of Mosquito Vectors of Malaria, Filariasis and Dengue,” Vector Borne and Zoonotic Diseases, Vol. 12, No. 3, 2012, pp. 262-268. doi:10.1089/vbz.2011.0661
[29] K. A. Priyadarshini, K. Murugan, C. Panneerselvam, S. Ponarulselvam, J. S. Hwang and M. Nicoletti, “Biolarvicidal and Pupicidal Potential of Silver Nanoparticles Synthesized Using Euphorbia hitra against Anopheles stephensi Liston (Diptera: Culicidae),” Parasitology Research, Vol. 111, No. 3, 2012, pp. 997-1006. doi:10.1007/s00436-012-2924-8
[30] C. D. Patil, H. P. Borase, S. V. Patil, R. B. Salunkhe and B. K. Salunkhe, “Larvicidal Activity of Silver Nanoparticles Synthesized Using Pergularia daemia Plant Latex against Aedes aegypti and Anopheles stephensi and Non Target Fish Poicillia reticulate,” Parasitology Research, Vol. 111, No. 2, 2012, pp. 555-562. doi:10.1007/s00436-012-2867-0
[31] Subarani, S. Sabhanayakam and C. Kamaraj, “Studies on the Impact of Biosynthesized Silver Nanoparticles (AgNPs) in Relation to Malaria and Filariasis Vector Control against Anopheles stephensi Liston and Culex quinquefasciatus Say (Diptera: Culicidae),” Parasitology Research, Vol. 112, No. 2, 2012, pp. 487-499. doi:10.1007/s00436-012-3158-5

Copyright © 2022 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.