Methane Steam Reforming on Supported Nickel Based Catalysts. Effect of Oxide ZrO2, La2O3 and Nickel Composition


The catalytic properties of Ni (4 and 10 wt%) supported on both La2O3 and ZrO2 were investigated for the methane steam reforming reaction between 475 and 700 at atmospheric pressure. The catalysts were prepared by the impregnation method and characterized by several techniques (atomic absorption, BET method, X-ray diffraction and TG-TPO). The catalytic activity of Ni/support systems strongly depends on both of the nature and physico-chemical properties of the support. No deactivation was observed in catalytic systems, whatever the reaction temperature indicating high stability of the catalyst.

Share and Cite:

A. Belhadi, M. Trari, C. Rabia and O. Cherifi, "Methane Steam Reforming on Supported Nickel Based Catalysts. Effect of Oxide ZrO2, La2O3 and Nickel Composition," Open Journal of Physical Chemistry, Vol. 3 No. 2, 2013, pp. 89-96. doi: 10.4236/ojpc.2013.32011.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] B. Neumann and K. Jacob, “Equilibrium in Formation of Methane from Carbon Monoxide and Hydrogen, or from Carbon Dioxide and Hydrogen,” Schrift für Elektrochemie, Vol. 30, 1924, pp. 557-576.
[2] J. R. Rostrup-Nielsen, “Catalytic Steam Reforming,” In: J. R. Anderson and M. Boudart, Eds., Catalysis: Science and Technology, Springer-Verlag, New York, 1984, pp. 1-117. doi:10.1007/978-3-642-93247-2_1
[3] K. Hou and R. Hughes, “The Kinetics of Methane Steam Reforming over a Ni/a-Al2O Catalyst,” Chemical Engineering Journal, Vol. 82, No. 1-3, 2001, pp. 311-328. doi:10.1016/S1385-8947(00)00367-3
[4] S. Zhang, J. Wang and X. Wang, “Effect of Calcination Temperature on Structure and Performance of Ni/TiO2-SiO2 Catalyst for CO2 Reforming of Methane,” Journal of Natural Gas Chemistry, Vol. 17, No. 179, 2008, pp. 179-183. doi:10.1016/S1003-9953(08)60048-1
[5] V. R Choudhary, B. S Uphade and A. S. Mamman, “Simultaneous Steam and CO2 Reforming of Methane to Syngas over NiO/MgO/SA-5205 in Presence and Absence of Oxygen,” Applied Catalysis A: General, Vol. 168, No. 1, 1998, pp. 33-46. doi:10.1016/S0926-860X(97)00331-1
[6] J. H. Kim, D. J. Suh, T. J. Park and K. L. Kim, “Effect of Metal Particle Size on Coking during CO2 Reforming of CH4 over Ni-Alumina Aerogel Catalysts,” Applied Catalysis A: General, Vol. 197, No. 2, 2000, pp. 191-200.
[7] L. V. Mattos, E. R. de Oliveira, P. D. Resende, F. B. Noronha and F. B. Passos, “Partial Oxidation of Methane on Pt/Ce-ZrO2 Catalysts,” Catalysis Today, Vol. 77, No. 3, 2002, pp. 245-256. doi:10.1016/S0920-5861(02)00250-X
[8] F. B. Noronha, E. C. Fendley, R. R. Soares, W. E. Alvarez and D. E. Resasco, “Correlation between Catalytic Activity and Support Reducibility in the CO2 Reforming of Methane over Pt/CexZr1-xO2 Catalysts,” Chemical Engineering Journal, Vol. 82, No. 1-3, 2001, pp. 21-31. doi:10.1016/S1385-8947(00)00368-5
[9] H. S. Roh, K. W. Jun, W. S. Dong, J. S. Chang, S. E. Park and J. Yung-II, “Highly Active and Stable Ni/Ce-ZrO2 Catalyst for H2 Production from Methane,” Journal of Molecular Catalysis A: Chemical, Vol. 181, No. 1-2, 2002, pp. 137-142. doi:10.1016/S1381-1169(01)00358-2
[10] Y. Wang, Y. H. Chin, R. T. Rozmiarek, B. R. Johnson, Y. Gao, J. Watson, A. Y. L. Tonkovich and D. P. V. Wiel. “Highly Active and Stable Rh/MgO-Al2O3 Catalysts for Methane Steam Reforming,” Catalysis Today, Vol. 98, No. 4, 2004, pp. 575-581. doi:10.1016/j.cattod.2004.09.011
[11] T. Borowiecki, W. Gac and A. Denis, “Effects of Small MoO3 Additions on the Properties of Nickel Catalysts for the Steam Reforming of Hydrocarbons: III. Reduction of Ni-Mo/ Al2O3 Catalysts,” Applied Catalysis A: General, Vol. 270, No. 1-2, 2004, pp. 27-36. doi:10.1016/j.apcata.2004.03.044
[12] T. Wu, Q. Yan and H. Wan, “Partial Oxidation of Methane to Hydrogen and Carbon Monoxide over a Ni/TiO2 Catalyst,” Journal of Molecular Catalysis A: Chemical, Vol. 226, No. 1, 2005, pp. 41-48. doi:10.1016/j.molcata.2004.09.016
[13] V. R. Choudhary, S. Banerjee and A. M. Rajput, “Hydrogen from Step-Wise Steam Reforming of Methane over Ni/ZrO2: Factors Affecting Catalytic Methane Decomposition and Gasification by Steam of Carbon Formed on the Catalyst,” Applied Catalysis A: General, Vol. 234, No. 1-2, 2002, pp. 259-270. doi:10.1016/S0926-860X(02)00232-6
[14] R. Takahashi, S. Sato, T. Sodesawa, M. Yoshida and S. Tomiyama, “Addition of Zirconia in Ni/SiO2 Catalyst for Improvement of Steam Resistance,” Applied Catalysis A: General, Vol. 273, No. 1-2, 2004, pp. 211-215. doi:10.1016/j.apcata.2004.06.033
[15] Z. W. Liu, K. W. Jun, H. S. Roh, S. C. Baek, S. E. Park, “Pulse Study on the Partial Oxidation of Methane over Ni/a-Al2O3 Catalyst,” Journal of Molecular Catalysis A: Chemical, Vol. 189, No. 2, 2002, pp. 283-293. doi:10.1016/S1381-1169(02)00365-5
[16] N. Sahli, C. Petit, A. C. Roger, A. Kiennemann, S. Libs and M. M. Bettahar; “Ni Catalysts from NiAl2O4 Spinel for CO2 Reforming of Methane,” Catalysis Today, Vol. 113, No. 3-4, 2006, pp. 187-193. doi:10.1016/j.cattod.2005.11.065
[17] A. S. AL-Ubaid, “The Activity and Stability of Nickel/Silica Catalysts in Water and Methane Reaction,” Industrial & Engineering Chemistry Research, Vol. 27, No. 5, 1988, pp. 790-795. doi:10.1021/ie00077a013
[18] M. V. Twigg, “Catalyst Handbook Mansson,” 2nd Edition, Manson Publishing, London, 1994.
[19] P. Leroi, B. Madani, C. Pham-Huu, M. J. Ledoux, S. Savin-Poncet and J. L. Bousquet, “Ni/SiC: A Stable and Active Catalyst for Catalytic Partial Oxidation of Methane,” Catalysis Today, Vol. 91-92, 2004, pp. 53-58. doi:10.1016/j.cattod.2004.03.009
[20] J. A. C. Ruiz, F. B. Passos, J. M. C. Bueno, E. F. Souza-Aguiar, L. V. Mattos and F. B. Noronha, “Syngas Production by Autothermal Reforming of Methane on Supported Platinum Catalysts,” Applied Catalysis A: General, Vol. 334, No. 1-2, 2008, pp. 259-267. doi:10.1016/j.apcata.2007.10.011
[21] C. Lahousse, A. Aboulayt, F. Maugé, J. Bachelier and J. C. Lavalley, “Acidic and Basic Properties of Zirconia-Alumina and Zirconia-Titania Mixed Oxides,” Journal of Molecular Catalysis, Vol. 84, No. 3, 1993, pp. 283-297. doi:10.1016/0304-5102(93)85061-W
[22] C. R. Jung, J .Han, S. W. Nam, T. H. Lim, S. A. Hong and H. I. Lee, “Selective Oxidation of CO over CuO-CeO2 Catalyst: Effect of Calcination Temperature,” Catalysis Today, Vol. 93-95, 2004, pp. 183-190. doi:10.1016/j.cattod.2004.06.039
[23] Y. H. Wang and B. Q. Xu, “Comparative Study of Atmospheric and High Pressure CO2 Reforming of Methane over Ni/MgO-AN Catalyst,” Catalysis Letters, Vol. 99, No. 1-2, 2005, pp. 89-96. doi:10.1007/s10562-004-0784-2
[24] A. Belhadi and O. Cherifi, “Effet des Ajouts Métalliques sur les Catalyseurs à Base de Nickel Supportés sur Silice, Dans la Réaction de Vaporeformage du Méthane,” Journal de la Société Algérienne de Chimie, Vol. 19, No. 1, 2009, pp. 49-61.
[25] F. Fally, V. Perrichon, H. Vidal, J. Kaspar, G. Blanco, J. M. Pintado, S. Bernal, G. Colon, M. Daturi and J. C. Lavalley, “Modification of the Oxygen Storage Capacity of CeO2-ZrO2 Mixed Oxides after Redox Cycling Aging,” Catalysis Today, Vol. 59, No. 3-4, 2000, pp. 373-386. doi:10.1016/S0920-5861(00)00302-3
[26] H. Vidal, J. Kaspar, M. Pijolat, G. Colon, S. Bernal, A. Cordón, V. Perrichon and F. Fally, “Redox Behavior of CeO2-ZrO2 Mixed Oxides: I. Influence of Redox Treatments on High Surface Area Catalysts,” Applied Catalysis B: Environmental, Vol. 27, No. 1, 2000, pp. 49-63. doi:10.1016/S0926-3373(00)00138-7
[27] S. M. Stagg-Williams and D. E. Resasco, “Effect of Promoters on Supported Pt Catalysts for CO2 reforming of CH4,” Studies in Surface Science and Catalysis, Vol. 119, 1998, pp. 813-818. doi:10.1016/S0167-2991(98)80532-6
[28] S. M. Stagg-Williams, F. B. Noronha, G. Fendley and D. E. Resasco, “CO2 Reforming of CH4 over Pt/ZrO2 Catalysts Promoted with La and Ce Oxides,” Journal of Catalysis, Vol. 194, No. 2, 2000, pp. 240-249. doi:10.1006/jcat.2000.2939
[29] D. Li, T. Shishido, Y. Oumi, T. Sano and K. Takehira, “Self-Activation and Self-Regenerative Activity of Trace Rh-Doped Ni/Mg(Al)O Catalysts in Steam Reforming of Methane,” Applied Catalysis A: General, Vol. 332, No. 1, 2007, pp. 98-109. doi:10.1016/j.apcata.2007.08.008

Copyright © 2021 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.