Scientific Research

An Academic Publisher

**On a New Equation for Critical Current Density Directly in Terms of the BCS Interaction Parameter, Debye Temperature and the Fermi Energy of the Superconductor** ()

Recasting the BCS theory in the larger framework of the Bethe-Salpeter equation, a new equation is derived for the temperature-dependent critical current density *j _{c}*(

*T*) of an elemental superconductor (SC) directly in terms of the basic parameters of the theory, namely the dimensionless coupling constant [N(0)V], the Debye temperature

*θ*and, additionally, the Fermi energy

_{D}*E*—unlike earlier such equations based on diverse, indirect criteria. Our approach provides an

_{F}*ab initio*theoretical justification for one of the latter, text book equations invoked at

*T*= 0 which involves Fermi momentum; additionally, it relates

*j*with the relevant parameters of the problem at

_{c}*T*≠ 0. Noting that the numerical value of

*E*of a high-

_{F}*T*SC is a necessary input for the construction of its Fermi surface—which sheds light on its gap-structure, we also briefly discuss extension of our approach for such SCs.

_{c}

Keywords

Share and Cite:

*World Journal of Condensed Matter Physics*, Vol. 3 No. 2, 2013, pp. 103-110. doi: 10.4236/wjcmp.2013.32017.

Conflicts of Interest

The authors declare no conflicts of interest.

[1] | M. Randeria, “Crossover from BCS Theory to Bose-Einstein Condensation,” In: A. Griffin, D. W. Snoke and S. Stringari, Eds., Bose-Einstein Condensation, Cambridge University Press, Cambridge, 1995, p. 355. doi:10.1017/CBO9780511524240.017 |

[2] | M Tinkham, “Introduction to Superconductivity,” McGraw Hill, New York, 1975. |

[3] | H. Ibach and H. Lüth, “Solid State Physics,” Springer, Berlin, 1996. doi:10.1007/978-3-642-88199-2 |

[4] | C. P. Bean, “Magnetization of High-Field Superconductors,” Reviews of Modern Physics, Vol. 36, No. 1, 1964, pp. 31-39. doi:10.1103/RevModPhys.36.31 |

[5] | Y. B. Kim, C. F. Hempstead and A. R. Strand, “Magnetization and Critical Supercurrents,” Physical Review, Vol. 129, No. 2, 1963, pp. 528-535. doi:10.1103/PhysRev.129.528 |

[6] | A. S. Alexandrov, “Nonadiabatiic Superconductivity in MgB2 and Cuprates,” 2001. http://arxiv.org/abs/cond-mat/0104413 |

[7] | A. P. Cracknell and K. C. Wong, “The Fermi Surface,” Clarendon Press, Oxford, 1973. |

[8] | J. C. Campuzano, G. Jennings, M. Faiz, L. Beaulaigue, B. W. Veal, J. Z. Liu, A. P. Paulikas, K. Vandervoort, H. Claus, R. S. List, A. J. Arko and R. J. Bartlett, “Fermi Surfaces of YBa2Cu3O6.9 as seen by Angle-Resolved Photoemission,” Physical Review Letters, Vol. 64, No. 19, 1990, pp. 2308-2311. doi:10.1103/PhysRevLett.64.2308 |

[9] | C. G. Olsson, R. Liu, D. W. Lynch, R. S. List, A. J. Arko, B. W. Veal, P. Z. Jiang and A. P. Paulika, “High-Resolution Angle-Resolved Photoemission Study of the Fermi Surface and the Normal-State Electronic Structure of Bi2Sr2CaCu2O8,” Physical Review B, Vol. 42, No. 1, 1990, pp. 381-386. doi:10.1103/PhysRevB.42.381 |

[10] | D.-H. Lee, “Iron-Based Superconductors: Nodal Rings,” Nature Physics, Vol. 8, 2012, pp. 364-365. doi:10.1038/nphys2301 |

[11] | Y. Zhang, Z. R. Ye, Q. Q. Ge, F. Chen, J. Jiang, M. Xu, B. P. Xie and D. L. Feng, “Nodal Superconducting-Gap Structure in Ferropnictide Superconductor BaFe2(As0.7P0.3)2,” Nature Physics, Vol. 8, 2012, pp. 371-375. doi:10.1038/nphys2248 |

[12] | M. P. Allan, A. W. Rost, A. P. Mackenzie, Y. Xie, J. C. Davis, K. Kihou, C. H. Lee, A. Iyo, H. Eisaki and T.-M. Chuang, “Anisotropic Energy Gaps of Iron-Based Superconductivity from Intraband Quasiparticle Interference in LiFeAs,” Science, Vol. 336, No. 6081, 2012, pp. 563-567. doi:10.1126/science.1218726 |

[13] | G. P. Malik, “On the Equivalence of the Binding Energy of a Cooper Pair and the BCS Energy Gap: A Framework for Dealing with Composite Superconductors,” International Journal of Modern Physics B, Vol. 24, No. 9, 2010, pp. 1159-1172. doi:10.1142/S0217979210055408 |

[14] | G. P. Malik, I. Chávez and M. de Llano, “Generalized BCS Equations and Iron-Pnictide Superconductors,” Journal of Modern Physics, Vol. 4, 2013, pp. 474-480. |

[15] | E. E. Salpeter, “Mass Corrections to the Fine Structure of Hydrogen-Like Atoms,” Physical Review, Vol. 87, No. 2, 1952, p. 328. doi:10.1103/PhysRev.87.328 |

[16] | G. P. Malik and U. Malik, “High-Tc Superconductivity via Superpropagators,” Physica B, Vol. 336, No. 3-4, 2003, pp. 349-352. doi:10.1016/S0921-4526(03)00302-8 |

[17] | G. P. Malik, “Generalized BCS Equations: Applications,” International Journal of Modern Physics B, Vol. 24, No. 19, 2010, pp. 3701-3712. doi:10.1142/S0217979210055858 |

[18] | G. P. Malik and U. Malik, “A Study of the Thalliumand Bismuth-Based High-Temperature Superconductors in the Framework of the Generalized BCS Equations,” Journal of Superconductivity and Novel Magnetism, Vol. 24, No. 1-2, 2011, pp. 255-260. doi:10.1007/s10948-010-1009-0 |

[19] | A. C. Rose-Innes and E. H. Rhoderic, “Introduction to Superconductivity,” Pergamon, Oxford, 1978. |

[20] | C. Kittel, “Introduction to Solid State Physics,” Wiley Eastern, New Delhi, 1974. |

[21] | G. P. Malik, “High-Tc Superconductivity via Superpropagators Revisited,” Physica C, Vol. 468, No. 13, 2008, pp. 949-954. doi:10.1016/j.physc.2008.03.002 |

[22] | G. P. Malik, “On Landau Quantization of Cooper Pairs in a Heat Bath,” Physica B, Vol. 405, 2010, pp. 3475-3481. doi:10.1016/j.physb.2010.05.026 |

Copyright © 2020 by authors and Scientific Research Publishing Inc.

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.