Deposition of a-CNx:H Films Using Uniform Supermagnetron Plasma under a Stationary Magnet Field

Abstract

By generating closed-loop electron E × B drift over the front and back surface of a band magnetron cathode, a uniform magnetron plasma can be formed over the front surface. Here, we attempted to generate a uniform supermagnetron plasma under a stationary magnetic field by situating two such band magnetron cathodes face-to-face in parallel. Performing uniform supermagnetron plasma chemical vapor deposition (CVD) with tetraethylorthosilicate (TEOS)/O2 CVD, SiO2 films with good uniformity (±5%) at the central region of the cathode could be achieved under a stationary magnetic field of about 160 G. Using this supermagnetron plasma CVD apparatus, a-CNx:H films were then deposited to investigate their characteristics using isobutane (i-C4H10)/N2 mixed gases. A relatively high deposition rate of about 100 nm/min was obtained. The a-CNx:H films obtained had a hardness of about 25 GPa, higher than that of glass (22 GPa).

Share and Cite:

H. Kinoshita, S. Yagi and M. Sakurai, "Deposition of a-CNx:H Films Using Uniform Supermagnetron Plasma under a Stationary Magnet Field," Journal of Modern Physics, Vol. 4 No. 5, 2013, pp. 587-590. doi: 10.4236/jmp.2013.45083.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] M. Zhang, Y. Nakayama and M. Kume, Solid State Communications, Vol. 110, 1999, pp. 679-683. doi:10.1016/S0038-1098(99)00142-8
[2] R. Reyes, C. Legnani, P. M. Ribeiro Pinto, M. Cremona, P. J. G. de Araújo and C. A. Achete, Applied Physics Letters, Vol. 82, 2003, pp. 4017-4019. doi:10.1063/1.1581000
[3] K. Sakurai, H. Kinoshita, G. Ohno, Y. Nakanishi and M. Kubota, Japanese Journal of Applied Physics, Vol. 47, 2008, pp. 7216-7219. doi:10.1143/JJAP.47.7216
[4] H. Kinoshita and H. Suzuki, Journal of Modern Physics, Vol. 2, 2011, pp. 398-403. doi:10.4236/jmp.2011.25049
[5] J. Robertson, Journal of Vacuum Science and Technology B, Vol. 17, 1999, pp. 659-665. doi:10.1116/1.590613
[6] Y. Umehara, S. Murai, Y. Koide and M. Murakami, Diamond and Related Materials, Vol. 11, 2002, pp. 1429-1435. doi:10.1016/S0925-9635(02)00042-0
[7] H. Kinoshita, M. Yamashita and T. Yamaguchi, Japanese Journal of Applied Physics, Vol. 45, 2006, pp. 8401-8405. doi:10.1143/JJAP.45.8401
[8] H. Kinoshita, T. Ishida and S. Ohno, Journal of Applied Physics, Vol. 62, 1987, pp. 4269-4272. doi:10.1063/1.339100
[9] K. E. Davies, M. Gross and C. M. Horwitz, Journal of Vacuum Science and Technology A, Vol. 11, 1993, pp. 2752-2757. doi:10.1116/1.578637
[10] S. Bui, J. Sasserath and E. Ghanbari, Journal of Vacuum Science and Technology A, Vol. 10, 1992, pp. 1238-1243. doi:10.1116/1.578233
[11] H. Kinoshita, S. Nomura and M. Honda, Journal of Vacuum Science and Technology A, Vol. 18, 2000, pp. 367-371. doi:10.1116/1.582194
[12] K. Sano, S. Hayashi, S. Wickramanayaka and Y. Hatanaka, Thin Solid Films, Vol. 281-282, 1996, pp. 397-400. doi:10.1016/0040-6090(96)08701-9

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.