AlCl3 Supported Catalysts for the Isomerization of Endo-Tetrahydrodicyclopentadiene


Two of zeolites such as Hβ and HY, and mesoporous HMCM-41 were used as supports to immobilize AlCl3 for the investigation of the isomerization of endo-tetrahydrodicyclopentadiene (endo-TCD). The dependences of porous structure and surface acidity of the AlCl3 immobilized catalysts on the activity and selectivity were studied. Based on characterization studies, both the large pore diameter and strong acid sites of the supported catalysts contributed to the high activities in the endo-TCD conversion. And specifically the stronger Lewis acid sites seems to be responsible for the higher selectivity onto exo-TCD, and the stronger Br?nsted acid sites were crucial to the formation of adamantane through the further isomerization of exo-TCD.

Share and Cite:

M. Ji, Y. Zhou, Q. Luo, S. Park and T. Cai, "AlCl3 Supported Catalysts for the Isomerization of Endo-Tetrahydrodicyclopentadiene," Green and Sustainable Chemistry, Vol. 3 No. 2, 2013, pp. 43-47. doi: 10.4236/gsc.2013.32008.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] H. S. Chung, C. S. H. Chen, R. A. Kremer, J. R. Boulton and G. W. Burdette, “Recent Developments in High-Energy Density Liquid Hydrocarbon Fuels,” Energy and Fuels, Vol. 13, No. 3, 1999, pp. 641-649. doi:10.1021/ef980195k
[2] G. Lamoureux and G. Artavia, “Use of the Adamantane Structure in Medicinal Chemistry,” Current Medicinal Chemistry, Vol. 17, No. 26, 2010, pp. 2967-2978. doi:10.2174/092986710792065027
[3] A. Masaaki, G. Akira and M. Shinji, EP Patent 2372799, 2011.
[4] E. M. Engler, M. Farcasiu, A. Sevin, J. M. Cense and P. V. R. Schleyer, “Mechanism of Adamantane Rearrange- ments,” Journal of the American Chemical Society, Vol. 95, No. 17, 1973, pp. 5769-5771. doi:10.1021/ja00798a059
[5] “Société des Usines Chimiques Rhǒne-Poluenc,” FR Patent 1431816, 1966.
[6] G. A. Olah and O. Farooq, “Chemistry in Superacids. 7. Superacid-Catalyzed Isomerization of Endoto Exo-Trimethylenenorbornane (Tetrahydrodicyclopentadiene) and to Adamantine,” Journal of Organic Chemistry, Vol. 51, No. 26, 1986, pp. 5410-5413. doi:10.1021/jo00376a067
[7] M. Y. Huang, J. C. Wu, F. S. Shieu and J. J. Lin, “Isomerization of Exo-Tetrahydrodicyclopentadiene to Adamantane Using an Acidity-Adjustable Chloroaluminate Ionic Liquid,” Catalysis Communications, Vol. 10, No. 13, 2009, pp. 1747-1751. doi:10.1016/j.catcom.2009.05.030
[8] K. Honna, M. Sugimoto, N. Shimizu and K. Kurisaki, “Catalytic Rearrangement of Tetrahydrodicyclotadiene to Adamantine over Y-Zeolite,” Chemistry Letters, Vol. 3, No. 3, 1986, pp. 315-318.
[9] M. Navrátilová and K. Sporka, “Synthesis of Adamantane on Commercially Available Zeolitic Catalysts,” Applied Catalysis A: General, Vol. 203, No. 1, 2000, pp. 127-132. doi:10.1016/S0926-860X(00)00477-4
[10] J. H. Clark, K. Martin, A. J. Teasdale and S. J. Barlow, “Environmentally Friendly Catalysis Using Supported Reagents: Evolution of a Highly Active Form of Immobilised Aluminium Chloride,” Journal of the Chemical Society, Chemical Communications, Vol. 19, No. 19, 1995, pp. 2037-2040. doi:10.1039/c39950002037
[11] C. DeCastro, E. Sauvage, M. H. Valkenberg and W. F. Holderich, “Immobilised Ionic Liquids as Lewis Acid Catalysts for the Alkylation of Aromatic Compounds with Dodecene,” Journal of Catalysis, Vol. 196, No. 1, 2000, pp. 86-94. doi:10.1006/jcat.2000.3004
[12] Y. Takefumi, I. Tokuji, I. Shigeru, S. Michimasa, K. Yoshiyuki and T. Masanori, “Highly Active Supported Catalysts for Olefin Polymerization: Preparation and Characterization of the Catalyst,” Journal of Polymer Science, Part A: Polymer Chemistry, Vol. 26, No. 2, 1988, pp. 477-489. doi:10.1002/pola.1988.080260212
[13] L. M. Wu, M. Ji, M. He and T. X. Cai, “Synthesis of Adamantane Catalyzed by an Active Immobilized Aluminium Chloride Catalyst,” Chinese Journal of Catalysis, Vol. 28, No. 7, 2007, pp. 585-587. doi:10.1016/S1872-2067(07)60049-7
[14] L. L. Qi, M. Ji, M. He and T. X. Cai, “AlCl3/MCM-41 as a Catalyst for Isomerization of Endo-Tricyclodecane,” Chinese Journal of Catalysis, Vol. 31, No. 4, 2010, pp. 383-385. doi:10.1016/S1872-2067(09)60057-7
[15] W. H. Zhang, J. L. Shi, L. Z. Wang and D. S. Yan, “Preparation and Characterization of ZnO Clusters inside Mesoporous Silica,” Chemistry of Materials, Vol. 12, No. 5, 2000, pp. 1408-1413. doi:10.1021/cm990740a
[16] R. S. Drago and E. E. Getty, “Preparation and Catalytic Activity of a New Solid Acid Catalyst,” Journal of the American Chemical Society, Vol. 110, No. 10, 1988, pp. 3311-3312. doi:10.1021/ja00218a057
[17] T. Xu, N. Kob, R. S. Drago, J. B. Nicholas and J. F. Haw, “A Solid Acid Catalyst at the Threshold of Superacid Strength: NMR, Calorimetry, and Density Functional Theory Studies of Silica-Supported Aluminum Chloride,” Journal of American Chemical Society, Vol. 119, No. 50, 1997, pp. 12231-12239. doi:10.1021/ja970850n
[18] E. P. Parry, “An Infrared Study of Pyridine Adsorbed on Acidic Solids. Characterization of Surface Acidity,” Journal of Catalysis, Vol. 2, No. 5, 1963, pp. 371-379. doi:10.1016/0021-9517(63)90102-7
[19] T. R. Hughes and H. M. White, “A Study of the Surface Structure of Decationized Y Zeolite by Quantitative Infrared Spectroscopy,” Journal of Physical Chemistry, Vol. 71, No. 7, 1967, pp. 2192-2201. doi:10.1021/j100866a035
[20] C. Defosse and P. Canesson, “Potentiality of Photoelectron Spectroscopy in the Characterization of Surface Acidity: Photoelectron and Infrared Spectroscopic Comparative Study of Pyridine Adsorption on NH4-Y Zeolite Activated at Various Temperatures,” Journal of the Chemical Society, Faraday Transactions 1: Physical Chemistry in Condensed Phases, Vol. 1, No. 72, 1976, pp. 2565-2576.

Copyright © 2021 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.