Share This Article:

Twin-T Oscillator Containing Polymer Coated Parallel Plate Capacitor for Sea Water Salinity Sensing

Abstract Full-Text HTML XML Download Download as PDF (Size:735KB) PP. 57-64
DOI: 10.4236/ojab.2013.22007    4,663 Downloads   7,337 Views   Citations


This paper presents the development of a Twin-T oscillator comprising polymer coated parallel plates as a sensor for ocean water salinity monitoring.This sensor employs a parallel plate capacitor design, with sea water serving as the medium between plates. Novalac resin and a proprietary commercial polymer (AccufloTW) were investigated as corrosion protective coatings for the copper electrodes of the capacitor. Electrochemical Impedance Spectroscopy (EIS) was employed to evaluate corrosion inhibition of polymer coatingin sea water. A detection circuit was designed and simulated using P-spice and then implemented in Printed Circuit Board (PCB). EIS results indicate that Accuflo exhibits better corrosion inhibition in ocean water than Novolac. Further, the use of Twin-T oscillator based detection circuit resulted in enhanced sensitivity and better detection limit. Experiments performed using ocean water samples resulted in oscillator frequency shift of 410 Hertz/power supply unit (Hz/PSU). Oscillator frequency drift was reduced using frequency-to-voltage converters and sensitivity of 10 mV/PSU was achieved.

Conflicts of Interest

The authors declare no conflicts of interest.

Cite this paper

Bhatt, S. , Rahman, A. , Arya, S. and Bhansali, S. (2013) Twin-T Oscillator Containing Polymer Coated Parallel Plate Capacitor for Sea Water Salinity Sensing. Open Journal of Applied Biosensor, 2, 57-64. doi: 10.4236/ojab.2013.22007.


[1] D. Roemmich and J. Gilson, “The 2004-2008 Mean and Annual Cycle of Temperature, Salinity, and Steric Height in the Global Ocean from the Argo Program,” Progress in Oceanography, Vol. 82, No. 2, 2009, pp. 81-100. doi:10.1016/j.pocean.2009.03.004
[2] J. Church, P. L. Woodworth, T. Aarup and S. Wilson, “Ocean Temperature and Salinity Contributions to Global and Regional Sea-Level Change,” In: J. A. Church, P. L. Woodworth, T. Aarup and W. S. Wilson, Eds., Understanding Sea-level Rise and Variability, Wiley, UK, 2010, pp. 143-176. doi:10.1002/9781444323276.ch6
[3] H. V. Thurman and A. P. Trujillo, “Essentials of Oceanography,” Prentice Hall, Upper Saddle River, NJ, 2002.
[4] R. H. Stewart, “Temperature, Salinity, and Density,” In: R. H. Stewart, Ed., Introduction to Physical Oceanography, Prentice Hall, 2008, pp. 73-102.
[5] H. U. Sverdrup, “Oceanography for Meteorologists,” Prentice-Hall, Inc., New York, 1942. doi:10.5962/bhl.title.17039
[6] S. H. Jury, M. T. Kinnison, W. H. Howell and W. H. Watson, “The Effects of Reduced Salinity on Lobster (Homarus Americanus Milne-Edwards) Metabolism: Implications for Estuarine Populations,” Journal of Experimental Marine Biology and Ecology, Vol. 176, No. 2, 1994, pp. 167-185. doi:10.1016/0022-0981(94)90183-X
[7] NASA Oceanography, Sea Surface Salinity.
[8] R. G. Perkin and E. L. Lewis, “The Practical Salinity Scale 1978: Fitting the Data,” IEEE Journal of Oceanic Engineering, Vol. 5, No. 1, 1980, pp. 9-16. doi:10.1109/JOE.1980.1145441
[9] UNESCO, “Algorithm for Computation of Fundamental Properties of Seawater,” UNESCO Technical Papers in Marine Sciences, Vol. 36, 1983, p. 36.
[10] V. Klemas, “Remote Sensing of Sea Surface Salinity: An Overview with Case Studies,” Journal of Coastal Research, Vol. 27, No. 5, 2011, pp. 830-838. doi:10.2112/JCOASTRES-D-11-00060.1
[11] M. L. Heron, A. Prytz, T. Stieglitz and D. M. Burrage, “Remote Sensing of Sea Surface Salinity: A Case Study in the Burdekin River, North-Eastern Australia,” Gayana (Concepc.), Vol. 68, No. 2, 2004, pp. 278-283. doi:10.4067/S0717-65382004000200050
[12] M. L. Menn, J. L. de Bougrenet de la Tocnaye, P. Grosso, L. Delauney, C. Podeur, P. Brault and O. Guillerme, “Advances in Measuring Ocean Salinity with an Optical Sensor,” Measurement Science and Technology, Vol. 22, No. 11, 2011, pp. 1-8. doi:10.1088/0957-0233/22/11/115202
[13] D. Malarde, Z. Y. Wu, P. Grosso, J. L. de Bougrenet de la Tocnaye and M. L. Menn, “High-resolution and compact refractometer for salinity measurements,” Measurement Science and Technology, Vol. 20, No. 1, 2009, Artical ID: 015204. doi:10.1088/0957-0233/20/1/015204
[14] G. R. Langereis, “An Integrated Sensor System for Monitoring Washing Purposes,” University of Twente, Netherlands, 1999.
[15] B. H. Timmer, O. W. Sparreboom, P. Bergveld and A. Berg van den, “Planar Interdigitated Conductivity Sensors for Low Electrolyte Concentrations,” Proceedings Semiconductor Sensor and Actuator Technology, 2001, pp. 878-883.
[16] W. Fritz and T. Fritz, “A Parallel-Plate Capacitor Used to Determine the Complex Permittivity of Supercooled Aqueous Solutions in the 1 MHz Range,” Measurement Science and Technology, Vol. 7, No. 8, 1996, pp. 1190. doi:10.1088/0957-0233/7/8/018
[17] W. C. Heerens, “Multi-Terminal Capacitor Sensors,” Journal of Physics E: Scientific Instruments, Vol. 15, No. 1, 1982, pp. 137-141.
[18] H. Golnabi, “Guard-Ring Effects on Capacitive Transducer System,” Scientia Iranica, Vol. 7, No. 1, 2000, pp. 25-31.
[19] R. Mancini, “Op Amps for Everyone: Design Reference,” Newnes, 2003.
[20] Electronic Datasheet, “NJM4151: V-F/F-V Converters,” New Japan Radio Co., Ltd.
[21] I. Thompson and D. Campbell, “The Development of a Non-Contact Probe for A.C. Impedance Measurements,” Corrosion Science, Vol. 37, No. 1, 1995, pp. 67-78. doi:10.1016/0010-938X(94)00107-H
[22] A. R. A. Rahman, S. Bhat and S. Bhansali, “Design, Fabrication, and Impedance Characterization of a Capacitance-Based Salinity Sensor for Marine Applications,” Journal of the Electrochemical Society, Vol. 155, No. 12, 2008, pp. J355-J360. doi:10.1149/1.2981045
[23] D. Loveday, P. Peterson and B. Rodgers, “Evaluation of Organic Coatings with Electrochemical Impedance Spectroscopy, Part 3: Protocols for Testing Coatings with EIS,” JCT Coatingstech, Vol. 2, No. 13, 2005, pp. 22-27.
[24] G. P. Bierwagen, L. He, J. Li, L. Ellingson and D. E. Tallman, “Studies of a New Accelerated Evaluation Method for Coating Corrosion Resistance—Thermal Cycling Testing,” Progress in Organic Coatings, Vol. 39, No. 1, 2000, pp. 67-78. doi:10.1016/S0300-9440(00)00106-5
[25] S. Duval, M. Keddam, M. Sfaira, A. Srhiri and H. Takenouti, “Electrochemical Impedance Spectroscopy of Epoxy-Vinyl Coating in Aqueous Medium Analyzed by Dipolar Relaxation of Polymer,” Journal of the Electrochemical Society, Vol. 149, No. 11, 2002, pp. B520-B529. doi:10.1149/1.1512667
[26] W. Strunz, C. A. Schiller and J. Vogelsang, “The Evaluation of Experimental Dielectric Data of Barrier Coatings in Frequencyand Time Domain,” Electrochimica Acta, Vol. 51, No. 8-9, 2006, pp. 1437-1442. doi:10.1016/j.electacta.2005.02.122

comments powered by Disqus

Copyright © 2019 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.