A Novel Design of Fuzzy PID Controllers for Dual-Sensor Cardiac Pacemaker Systems

Abstract

This work proposes to design a fuzzy proportional-integral derivative (FPID) controller for dual-sensor cardiac pacemaker systems, which can automatically control the heart rate to accurately track a desired preset profile. The combination of fuzzy logic and conventional PID control approaches is adopted for the controller design based on dual-sensors. This controller offers good adaptation of the heart rate to the physiological needs of the patient under different states (rest and walk). Through comparing with the conventional fuzzy control algorithm, FPID provides a more suitable control strategy to determine a pacing rate in order to achieve a closer match between actual heart rate and a desired profile. To assist the heartbeat recovery, the stimuli with adjustable pacing rate is generated by the pacemaker according to the FPID controller, such actual heart rate may track the preset heart rate faithfully. Simulation results confirm that this proposed control design is effective for heartbeat recovery and maintenance. This study will be helpful not only for the analysis and treatment of bradycardias but also for improving the performance of medical devices.

Share and Cite:

Shi, W. (2013) A Novel Design of Fuzzy PID Controllers for Dual-Sensor Cardiac Pacemaker Systems. Open Journal of Applied Biosensor, 2, 29-38. doi: 10.4236/ojab.2013.22004.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] E. Kenneth, A. U. Rajendra, N. Kannathal and L. C. Min, “Data Fusion of Multimodal Cardiovascular Signals,” Proceedings of 27th Annual International Conference of the IEEE Engineering in Medicine and Biology, Shanghai, 2005, pp. 4689-4692.
[2] M. Sthlberg, R. Kessels, C. Linde and F. Braunschweig, “Acute Haemodynamic Effects of Increase in Paced Heart Rate in Heart Failure Patients Recorded with an Implantable Haemodynamic Monitor,” Europace, Vol. 13, No. 2, 2011, pp. 237-243. doi:10.1093/europace/euq354
[3] X. Liu, Y. Zheng, M. W. Phyu, B. Zhao, M. Je and X. Yuan, “Multiple Functional ECG Signal Is Processing for Wearable Applications of Long-Term Cardiac Monitoring,” IEEE Transactions on Biomedical Engineering, Vol. 58, No. 2, 2011, pp. 380-389. doi:10.1109/TBME.2010.2061230
[4] D. J. Woollons, “To Beat or not to Beat: The History and Development of Heart Pacemakers,” Engineering Science and Education Journal, Vol. 4, No. 6, 1995, pp. 259-268. doi:10.1049/esej:19950604
[5] S. A. P. Haddad, R. P. M. Houben, and W. A. Serdijin, “The Evolution of Pacemakers,” IEEE Engineering in Medicine and Biology Magazine, Vol. 25, No. 3, 2006, pp. 38-48. doi:10.1109/MEMB.2006.1636350
[6] R. K. Shepard and K. A. Ellenbogen, “Leads and Longevity: How Long Will Your Pacemaker Last?” Europace, Vol. 11, No. 2, 2009, pp. 142-143. doi:10.1093/europace/eun359
[7] M. K. Das, G. Dandamudi, and H. A. Steiner, “Modern Pacemakers: Hope or Hype,” Pacing and Clinical Electrophysiology, Vol. 32, No. 9, 2009, pp. 1207-1221. doi:10.1111/j.1540-8159.2009.02467.x
[8] W. V. Shi and M. C. Zhou, “Recent Advances of Sensors for Pacemakers,” Proceeding of 2011 IEEE International Conference on Networking, Sensing and Control, Delft, 11-13 April 2011, pp. 520-525. doi:10.1109/ICNSC.2011.5874939
[9] A. Arnaud and C. Galup-Montoro, “Fully Integrated Signal Conditioning of an Accelerometer for Implantable Pacemakers,” Analog Integrated Circuits and Signal Processing, Vol. 49, No. 3, 2006, pp. 313-321. doi:10.1007/s10470-006-9708-y
[10] P. L. Johnson, J. C. Newton, D. L. Rollins, W. M. Smith and R. E. Ideker, “Adaptive Pacing during Ventricular Fibrillation,” Pacing and Clinical Electrophysiology, Vol. 26, No. 9, 2003, pp. 1824-1836. doi:10.1046/j.1460-9592.2003.t01-1-00276.x
[11] W. K. Wong, E. Bai and A. W. C. Chu, “Adaptive Time- Variant Models for Fuzzy-Time-Series Forecasting,” IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics, Vol. 40, No. 6, 2010, pp. 1531-1542. doi:10.1109/TSMCB.2010.2042055
[12] M. H. Hung, L. S. Shu, S. J. Ho, S. F. Hwang and S. Y. Ho, “A Novel Intelligent Multiobjective Simulated Annealing Algorithm for Designing Robust PID Controllers,” IEEE Transactions on Systems, Man and Cybernetics, Part A: Systems and Humans, Vol. 38, No. 2, 2008, pp. 319-330. doi:10.1109/TSMCA.2007.914793
[13] F. Karray, W. Gueaieb and S. Al-Sharhan, “The Hierarchical Expert Tuning of PID Controllers Using Tools of Soft Computing,” Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics, Vol. 32, No. 1, 2002, pp. 77-90. doi:10.1109/3477.979962
[14] S. Petrutiu, A. V. Sahakian, A. Ricke, B. Young and S. Swiryn, “High Resolution Electrocardiography Optimized for Recording Pulses from Electronic Pacemakers: Evaluation of a New Pacemaker Sensing System,” Computers in Cardiology, Durham, NC, 30 September-3 October 2007, pp. 197-200.
[15] P. Kligfield, K. G. Lax and P. M. Okin, “QT Interval- Heart Rate Relation during Exercise in Normal Men and Women: Definition by Linear Regression Analysis,” Journal of the American College of Cardiology, Vol. 28, No. 6, 1996, pp. 1547-1555. doi:10.1016/S0735-1097(96)00351-8
[16] G. F. Mitchell, A. Jeron and G. Koren, “Measurement of Heart Rate and QT Interval in the Conscious Mouse,” American Journal of Physiology-Heart and Circulatory Physiology, Vol. 274, No. 3, 1998, pp. H747-H751.
[17] C. W. Tao, “A Reduction Approach for Fuzzy Rule Bases of Fuzzy Controllers,” Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics, Vol. 32, No. 5, 2002, pp. 668-675. doi:10.1109/TSMCB.2002.1033186
[18] K. C. Sio and C. K. Lee, “Stability of Fuzzy PID Controllers,” IEEE Transactions on Systems, Man and Cybernetics, Part A: Systems and Humans, Vol. 28, No. 4, 1998, pp. 490-495. doi:10.1109/3468.686710
[19] L. X. Wang and J. M. Mendel, “Generating Fuzzy Rules by Learning from Examples,” IEEE Transactions on Systems, Man and Cybernetics, Vol. 22, No. 6, 1992, pp. 1414-1427. doi:10.1109/21.199466
[20] A. Wojtasik, Z. Jaworski, W. Kuzmicz, A. Wielgus, A. Walkanis and D. Sarna, “Fuzzy Logic Controller for Rate-Adaptive Heart Pacemaker,” Applied Soft Computing Journal, Vol. 4, No. 3, 2004, pp. 259-270. doi:10.1016/j.asoc.2004.03.005
[21] C. W. Tao and J. S. Taur, “Flexible Complexity Reduced PID-Like Fuzzy Controllers,” IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics, Vol. 30, No. 4, 2000, pp. 510-516. doi:10.1109/3477.865168
[22] Z. Y. Zhao, M. Tomizuka and S. Isaka, “Fuzzy Gain Scheduling of PID Controllers,” IEEE Transactions on Systems, Man and Cybernetics, Vol. 23, No. 5, 1993, pp. 1392-1398. doi:10.1109/21.260670
[23] W. Li, X. G. Chang, J. Farrell and F. M. Wahl, “Design of an Enhanced Hybrid FUZZY P+ID Controller for a Mechanical Manipulator,” IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics, Vol. 31, No. , 2001, pp.938-945. doi:10.1109/3477.969497
[24] J. G. Juang, M. T. Huang and W. K. Liu, “PID Control Using Presearched Genetic Algorithms for a MIMO System,” IEEE Transactions on Systems, Man, and Cybernetics, Part C: Applications and Reviews, Vol. 38, No. 5, 2008, pp. 716-727.
[25] A. Odwyer, “Handbook of PI and PID Controller Tuning Rules,” Imperial College Press, London, UK, 2003. doi:10.1142/p277
[26] E. Harinath and G. K. I. Mann, “Design and Tuning of Standard Additive Model Based Fuzzy PID Controllers for Multivariable Process Systems,” IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics, Vol. 38, No. 3, 2008, pp. 667-674. doi:10.1109/TSMCB.2008.919232
[27] M. Margaliot and G. Langholz, “Hyperbolic Optimal Control and Fuzzy Control,” IEEE Transactions on Systems, Man and Cybernetics, Part A: Systems and Humans, Vol. 29, No. 1, 1999, pp. 1-10. doi:10.1109/3468.736356
[28] H. X. Li, L. Zhang, K. Y. Cai and G. Chen, “An Improved Robust Fuzzy-PID Controller with Optimal Fuzzy Reasoning,” IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics, Vol. 35, No. 6, 2005, pp. 1283-1294. doi:10.1109/TSMCB.2005.851538
[29] G. K. I. Mann, B. G. Hu and R. G. Gosine, “Analysis of Direct Action Fuzzy PID Controller Structures,” IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics, Vol. 29, No. 3, 1999, pp. 371-388. doi:10.1109/3477.764871
[30] H. X. Li and H. B. Gatland, “Conventional Fuzzy Control and its Enhancement,” IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics, Vol. 26, No. 5, 1996, pp. 791-797. doi:10.1109/3477.537321
[31] G. K. I. Mann, B. G. Hu and R. G. Gosine, “Two-Level Tuning of Fuzzy PID Controllers,” IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics, Vol. 31, No. 2, 2001, pp. 263-269. doi:10.1109/3477.915351
[32] A. G. Hatzimichailidis and B. K. Papadopoulos, “Ordering Relation of Fuzzy Implications,” Journal of Intelligent and Fuzzy Systems, Vol. 19, No. 3, 2008, pp. 189-195.
[33] Y. Tsukamoto, “A Normative Approach to Fuzzy Logic Reasoning Using Residual Implications,” Journal of Advanced Computational Intelligence and Intelligent Informatics, Vol. 13, No. 3, 2009, pp. 262-267.
[34] D. L. Hayes, P. A. Friedman and M. Lloyd, “Cardiac Pacing and Defibrillation: A Clinical Approach,” Wiley- Blackwell, 2000.
[35] H. Wang, Y. Rong and T. Wang, “Laminar Cooling Control Based on Fuzzy-PID Controller,” IEEE International Conference on Information Management and Engineering, Chengdu, 16-18 April 2010, pp. 7-10.
[36] A. Visioli, “Fuzzy Logic Based Set-Point Weight Tuning of PID Controllers,” IEEE Transactions on Systems, Man, and Cybernetics, Vol. 29, No. 6, 1999, pp. 587-592. doi:10.1109/3468.798062
[37] B. M. Mohan and A. V. Patel, “Analytical Structures and Analysis of the Simplest Fuzzy PD Controllers,” IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics, Vol. 32, No. 2, 2002, pp. 239-248. doi:10.1109/3477.990881
[38] R. H. Whittington, L. Giovangrandi and G. T. A. Kovacs, “A Closed-Loop Electrical Stimulation System for Cardiac Cell Cultures,” IEEE Transactions on Biomedical Engineering, Vol. 52, No. 7, 2005, pp. 1261-1270. doi:10.1109/TBME.2005.847539
[39] W. V. Shi, T. N. Chang and M. C. Zhou, “Method to Detect Cardiac Abnormalities Based on Electrocardiography and Sinoatrial Pacemaker Model,” Proceedings of IEEE International Conference on Mechatronics and Automation, Xi’an, 4-7 August 2010, pp. 566-571.
[40] J. Keener and J. Sneyd, “Mathematical Physiology,” Springer, New York, 1998.
[41] V. Aboyans, M. Frank, K. Nubret, P. Lacroix and M. Laskar, “Heart Rate and Pulse Pressure at Rest Are Major Prognostic Markers of Early Postoperative Complications after Coronary Bypass Surgery,” European Journal of Cardio-Thoracic Surgery, Vol. 33, No. 6, 2008, pp. 971- 976. doi:10.1016/j.ejcts.2008.01.065
[42] A. D. Blaufox, L. A. Sleeper, D. J. Bradley, R. E. Breitbart, A. Hordof, R. J. Kanter, E. A. Stephenson, M. Stylianou, V. L. Vetter and J. P. Saul, “Functional Status, Heart Rate, and Rhythm Abnormalities in 521 Fontan Patients 6 to 18 Years of Age,” Journal of Thoracic and Cardiovascular Surgery, Vol. 136, No. 1, 2008, pp. 100- 107. doi:10.1016/j.jtcvs.2007.12.024
[43] A. Ferro, C. Duilio, M. Santomauro and A. Cuocolo, “Walk Test at Increased Levels of Heart Rate in Patients with Dual-Chamber Pacemaker and with Normal or Depressed Left Ventricular Function,” European Heart Journal, Vol. 24, No. 23, 2003, pp. 2123-2132. doi:10.1016/j.ehj.2003.09.007

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.