Crystallization of Amorphous Poly(Lactic Acid) Induced by Vapor of Acetone to Form High Crystallinity and Transparency Specimen


Crystallization of amorphous poly(lactic acid) (PLA) was investigated by exposing to vapor of acetone. The vapor of acetone induced crystallization of the amorphous PLA effectively. It took about 24 min to complete the crystallization of a 1 cm × 2 cm × 0.55 mm specimen at 25. The crystallization rate increased with increasing of conducting temperature. The crystallization method yielded high crystallinity about 40%, which was almost equal to that attained by annealing or immersion methods conducted as references. The specimens crystallized by the vapor showed higher transparency than those prepared by the reference methods. The crystallization was induced by diffusion of acetone into the amorphous phase of PLA, and polarized optical photomicrographs cleared that the diffusion obeyed Fick type diffusion.

Share and Cite:

N. Naga, Y. Yoshida, K. Noguchi and S. Murase, "Crystallization of Amorphous Poly(Lactic Acid) Induced by Vapor of Acetone to Form High Crystallinity and Transparency Specimen," Open Journal of Polymer Chemistry, Vol. 3 No. 2, 2013, pp. 29-33. doi: 10.4236/ojpchem.2013.32006.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] R. Auras, B. Harte and S. Selke, “An Overview of Polylactides as Packaging Materials,” Macromolecular Bioscience, Vol. 4, No. 9, 2004, pp. 835-864.
[2] Y. Ikada and H. Tsuji, “Biodegradable Polyesters for Medical and Ecological Applications,” Macromolecular Rapid Communication, Vol. 21, No. 3, 2000, pp. 117-132.
[3] J. R. Dorgan, B. Braun, J. R. Wegner and D. M. Knauss, “Degradable Polymers and Materials: Principles and Pra ctice (ACS Symposium Series),” 2006, pp. 102-125.
[4] M. Yasuniwa, S. Tsubakihasra, K. Iura, Y. Ono, Y. Dan and K. Takahashi, “Crystallization Behavior of Poly(L-lactic acid),” Polymer, Vol. 47, No. 21, 2006, pp. 7554-7563. doi:10.1016/j.polymer.2006.08.054
[5] T. Miyata and T. Masuko, “Crystallization Behavior of Poly (L-Lactide),” Polymer, Vol. 39, No. 22, 1998, pp. 5515-5521. doi:10.1016/S0032-3861(97)10203-8
[6] N. Kawamoto, A. Sakai, T. Horikoshi, T. Urushihara and E. Tobita, “Nucleating Agent for Poly(L-Lactic Acid)—An Optimization of Chemical Structure of Hydrazide Com pound for Advanced Nucleation Ability,” Journal of Appllied Polymer Science, Vol. 103, No. 1, 2007, pp. 198-203. doi:10.1002/app.25109
[7] E. Tobita, N. Kawamoto, T. Urushihara, H. Saito, H. Oku yama, T. Kanamori, M. Nakano and H. Okamoto, “Poly lactic Acid Resin Compositions, Moldings, and Process for Production Thereof,” 2011.
[8] N. Kawamoto, A. Sakai, T. Horikoshi, T. Urushihara and E. Tobita, “Physical and Mechanical Properties of Poly(L Lactic Acid) Nucleated by Dibenzoylhydrazide Com pound,” Journal of Appllied Polymer Science, Vol. 103, No. 1, 2007, pp. 244-250. doi:10.1002/app.25185
[9] M. Yoshimura and Y. Fukuoka, “Lactic Acid Polymer Com positions with Improved Crystallization Rate, Moldability, and Heat and Impact Resistance, Their Manufacture, and Moldings from Them,” 2006.
[10] M. Ozawa, Y. Kawamura and M. Kasai, “Polylactic Acid Compositions Containing Crystal Nucleating Agents with Accelerated Crystallization and Good Heat Resistance and Moldability,” 2005.
[11] N. Sato, T. Noguchi and H. Mori, “Polyester Resin Com positions with Improved Crystallizability,” 2004.
[12] H. Nishimura and M. Hioki, “Lactic Acid Polymer Molded Products with Excellent Heat and Impact Resistance and Their Manufacture,” 2004.
[13] H. Tsuji, H. Takai and S. K. Saha, “Isothermal and Non isothermal Crystallization Behavior of Poly(L-Lactic Acid): Effects of Stereocomplex as Nucleating Agent,” Polymer, Vol. 47, No. 11, 2006, pp. 3826-3837.
[14] S. Niga, M. Yoshimura and K. Matsumoto, “Lactic Acid Polymer Compositions with Improved Crystallization Rate, Their Moldings with High Crystallinity and Heat Resistance, and Method for Manufacture of the Moldings,” 2009.
[15] S. S. Ray, K. Yamada, K. Ueda and M. Okamoto, “Poly lactide-Layered Silicate Nanocomposite:? A Novel Biode gradable Material,” Nano Letters, Vol. 2, No. 10, 2002, pp. 1093-1096. doi:10.1021/nl0202152
[16] S. S. Ray, P. Maiti, M. Okamoto, K. Yamada and K. Ueda, “New Polylactide/Layered Silicate Nanocomposites. Preparation, Characterization, and Properties,” Macro molecules, Vol. 35, No. 8, 2002, pp. 3104-3110.
[17] P. Maiti, M. Okamoto, K. Yamamda, K. Ueda and K. Okamoto, “New Polylactide/Layered Silicate Nanocomposites:? Role of Organoclays,” Chemistry of Materials, Vol. 14, No. 11, 2002, pp. 4654-4661. doi:10.1021/cm020391b
[18] J. Y. Nam, S. S. Ray and M. Okamoto, “Crystallization Behavior and Morphology of Biodegradable Polylatide/ Layered Silicate Nanocomposite,” Macromolecules, Vol. 36, No. 19, 2003, pp. 7126-7131. doi:10.1021/ma034623j
[19] R. Hiroi, S. S. Ray, M. Okamoto and T. Shiroi, “Organically Modified Layered Titanate: A New Nanofiller to Improve the Performance of Biodegradable Polylactide,” Macrmolecular Rapid Communications, Vol. 25, No. 15, 2004, pp. 1359-1364. doi:10.1002/marc.200400173
[20] N. Naga, Y. Yoshida, M. Inui, K. Noguchi and S. Murase, “Crystallization of Amorphous Poly(Lactic Acid) Induced by Organic Solvents,” Journal of Applied Polymer Science, Vol. 119, No. 4, 2011, pp. 2058-2064. doi:10.1002/app.32890
[21] K. Tashiro and Y. Ueno, “Molecular Mechanism of Sol vent-Induced Crystallization of Syndiotactic Polystyrene Glass. 1. Time-Resolved Measurements of Infrred/Raman Spectra and X-Ray Diffraction,” Macromolecules, Vol. 34, No. 2, 2001, pp. 310-315. doi:10.1021/ma001659s
[22] P. Pan, B. Zhu and Y. Inoue, “Effect of Crystallization Temperature on Crystal Modifications and Crystallization Kinetics of Poly(L-Lactide),” Journal of Applied Polymer Science, Vol. 107, No. 1, 2008, pp. 54-62. doi:10.1002/app.27102
[23] J. Zhang, Y. Duan, H. Sato, H. Tsuji, I. Noda, S. Yan and Y. Ozaki, “Crystal Modifications and Thermal Behavior of Poly(L-Lactic Acid) Revealed by Infrared Spectrosco py,” Macromolecules, Vol. 38, No. 19, 2005, pp. 8012-8021. doi:10.1021/ma051232r
[24] P. Pan, B. Zhu, W. Kai, T. Dong and Y. Inoue, “Polymorphic Transition in Disordered Poly(L-Lactide) Crystals Induced by Annealing at Elevated Temperatures,” Macromolecules, Vol. 41, No. 12, 2008, pp. 4296-4304.
[25] M. Pyda and B. Wunderlich, “Reversing and Nonrevers ing Heat Capacity of Poly(Lactic Acid) in the Glass Tran sition Region by TMDSC,” Macromolecules, Vol. 38, No. 25, 2005, pp. 10472-10479. doi:10.1021/ma051611k
[26] J. Zhang, Y. Liang, J. Yan and J. Lou, “Study of the Molecular Weight Dependence of Glass Transition Temperature for Amorphous Poly(L-Lactide) by Molecular Dynamics Simulation,” Polymer, Vol. 48, No. 16, 2007, pp. 4900-4905. doi:10.1016/j.polymer.2007.06.030
[27] E. Zuza, J. M. Ugartmendia, A. Lopez, E. Meauiro, A. Leiardi and J. R. Sarasua, “Glass Transition Behavior and Dynamic Fragility in Polylactides Containing Mobile and Rigid Amorphous Fractions,” Polymer, Vol. 49, No. 20, 2008, pp. 4427-4432. doi:10.1016/j.polymer.2008.08.012
[28] J. Zhang, K. Tashiro, H. Tsuji and A. J. Domb, “Disorder-to-Order Phase Transition and Multiple Melting Be havior of Poly(L-Lactide) Investigated by Simultaneous Measurements of WAXD and DSC,” Macromolecules, Vol. 41, No. 4, 2008, pp. 1352-1357. doi:10.1021/ma0706071
[29] E. W. Fischer, H. J. Sterzel and G. Wegner, “Investigation of the Structure of Solution Grown Crystals of Lac tide Copolymers by Means of Chemicals Reactions,” Kolloid Zeitschrift & Zeitschrift fuer Polymere, Vol. 251, No. 11, 1973, pp. 980-990. doi:10.1007/BF01498927
[30] H. Ouyang and C. C. Chen, “Acetone Transport in Poly (Ethylene Terephthalate) and Related Phenomena,” Journal of Polymer Science Part B: Polymer Physics, Vol. 36, No. 1, 1998, pp. 163-169.
[31] H. Ouyang and S. H. Shore, “The Mass Transport in Poly (Ethylene Terephthalate) and Related Induced-Crystallization,” Polymer, Vol. 40, No. 19, 1999, pp. 5401-5406. doi:10.1016/S0032-3861(98)00764-2
[32] H. Ouyang, W. H. Lee, W. Ouyang, S. T. Shinue and T. M. Wu, “Solvent-Induced Crystallization in Poly(Ethy lene Terephthalate) during Mass Transport, Mechanism and Boundary Condition,” Macromolecules, Vol. 37, No. 20, 2004, pp. 7719-7723. doi:10.1021/ma0400416

Copyright © 2021 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.