Local Drug Delivery Strategy for Cancer Treatment: Use of Biocompatible Sol-Gel-Derived Porous Materials

DOI: 10.4236/njgc.2013.32012   PDF   HTML   XML   3,852 Downloads   6,688 Views   Citations


Porous silica xerogel materials have been developed to use as drug-release agents to be implanted directly in or near cancerous tissues. In order to test the capacity of the materials to absorb and then to release medicinal substances, a battery of examinations (UV and visible micro-Raman, porosity measurements, UV-visible absorption spectra) have been made using test drug molecules (clotrimazole, primaquine diphosphate and the anti-cancer agent vinblastine sulphate). Results show that the molecules can be post-doped into the gels and the Raman data provide indications of the best conditions for detecting the substances absorbed in the gels. Spectroscopic results show that the drug molecules are released by the xerogel over a period of 10 days. These results are promising for the development of these materials as drug-release agents.

Share and Cite:

O. Cristini-Robbe, F. Ruyffelaere, F. Dubart, A. Uwimanimpaye, C. Kinowski, R. Bernard, C. Robbe-Masselot, I. Yazidi and S. Turrell, "Local Drug Delivery Strategy for Cancer Treatment: Use of Biocompatible Sol-Gel-Derived Porous Materials," New Journal of Glass and Ceramics, Vol. 3 No. 2, 2013, pp. 74-79. doi: 10.4236/njgc.2013.32012.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] P. Parhi, C. Mohanty and S. Sahoo, “Nanotechnology-Based Combinational Drug Delivery: An Emerging Approach for Cancer Therapy,” Drug Discovery Today, Vol. 42, No. 3, 2001, pp. 291-293.
[2] S. Prakash, M. Malhotra, W. Shao, C. Tomaro-Duchesneau and S. Abbasi, “Polymeric Nanohybrids and Funtionalized Carbon Nanotubes as Drug Delivery Carriers for Cancer Therapy,” Advanced Drug Delivery Reviews, Vol. 63, No. 14-15, 2011, pp. 1340-1351. doi:10.1016/j.addr.2011.06.013
[3] J. Wolinshky, Y. Colson and M. Grinstaff, “Local Drug Delivery Strategies for Cancer Treatment: Gels Nanoparticles, Polymeric Films, Rods and Wafers,” Journal of Controlled Release, Vol. 159, No. 1, 2012, pp. 14-26. doi:10.1016/j.jconrel.2011.11.031
[4] P. P. Nampi, V. S. Mohan, A. K. Sinha and H. Varma, “High Surface Area Sol-Gel Nano Silica as a Novel Drug Carrier Substrate for Sustained Drug Release,” Materials Research Bulletin, Vol. 47, No. 1, 2012, pp. 1379-1384. doi:10.1016/j.materresbull.2012.03.003
[5] V. Ambrogi, L. Perioli, C. Pagano, F. Marmottini and M. Ricci, “Use of SBA-15 for Furosemide Oral Delivery Enhancement,” European Journal of Pharmaceutical Sciences, Vol. 46, No. 1-2 , 2012, pp. 43-48. doi:10.1016/j.ejps.2012.02.004
[6] R. Chen, H. Qu, A. Agrawal, S. Guo and P. Ducheyne, “Controlled Release of Small Molecules from Silica Xerogel with Limited Nanoporosity,” Journal of Materials Science Materials in Medicine, Vol. 24, No. 1, 2012, pp. 1-10. doi:10.1007/s10856-012-4783-3
[7] S. Wang, “Ordered Mesoporous Materials for Drug Delivery,” Microporous and Mesoporous Materials, Vol. 117, No. 1-2, 2009, pp. 1-9. doi:10.1016/j.micromeso.2008.07.002
[8] G. Maria, D. Berger, S. Nastase and I. Luta, “Kinetic Studies on the Irinotecan Release Based on Structural Properties of Functionalized Mesoporous-Silica Supports,” Microporous and Mesoporous Materials, Vol. 149, No. 1, 2012, pp. 25-35. doi:10.1016/j.micromeso.2011.09.005
[9] K. Ariga, A. Vinu, J. P. Hill and T. Mori, “Coordination Chemistry and Supramolecular Chemistry in Mesoporous Nanospace,” Coordination Chemistry Reviews, Vol. 251, No. 21-24, 2007, pp. 2562-2591. doi:10.1016/j.ccr.2007.02.024
[10] B. Menaa, F. Menaa, C. Aiolfi-Guimaraes and O. Sharts, “Silica Based Nanoporous Sol-Gel Glasses: From Bioencapsulation to Protein Folding Studies,” International Journal of Nanotechnology, Vol. 7, No. 1, 2010, pp. 1-45. doi:10.1504/IJNT.2010.029546
[11] O. Robbe, K. Woznica, E. Berrier, G. Ehrhart, B. Capoen, M. Bouazaoui and S. Turrell, “Raman Spectroscopic Investigations on the Kinetics of Gelation and Densification of Cd2+- and Pb2+-Doped Silica Glasses under Basic Conditions,” Thin Solid Films, Vol. 515, No. 1, 2006, pp. 73-79. doi:10.1016/j.tsf.2005.12.038
[12] S. Brunauer, L. S. Deming, W. S. Deming and E. Teller, “On a Theory of the Van Der Waals Adsorption of Gases,” Journal of the American Chemical Society, Vol. 62, No. 7, 1940, pp. 1723-1732. doi:10.1021/ja01864a025
[13] J. H. De Boer, “The Structure and Properties of Porous Materials,” Butterworths, London, 1958.
[14] S. Brunauer, P. H. Emmett and E. Teller, “Adsorption of Gases in Multimolecular Layers,” Journal of the American Chemical Society, Vol. 60, No. 2, 1938, pp. 309-319. doi:10.1021/ja01269a023
[15] E. P. Barret, G. L. Joyner and P. P. Halenda, “The Determination of Pore Volume and Area Distributions in Porous Substances. I. Computations from Nitrogen Isotherms,” Journal of the American Chemical Society, Vol. 73, No. 1, 1951, pp. 373-380. doi:10.1021/ja01145a126

comments powered by Disqus

Copyright © 2020 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.