Composition and Refractory Properties of Mixtures of Moroccan Silica-Alumina Geomaterials and Alumina

Abstract


Five mixtures (M1 to M5) of silica-alumina geomaterials and two varieties of alumina (AP and AR) were used for the elaboration of mullite refractory materials between 1500 and 1600. An X-ray diffraction (XRD) analysis showed that the refractory samples are composed of mullite, corundum and silica. The length of the mullite crystals was measured by a method of image analysis of scanning electron microscopy (SEM). Chemical and mechanical properties of these materials were investigated and correlated with their microstructure. Resistance towards Acid Attack test showed that the refractory samples present good resistance, as well as, the alumina powder AR obtained from waste of silica-alumina bricks proves to be efficient for an eventual use.


Share and Cite:

C. Sadik, I. Amrani and A. Albizane, "Composition and Refractory Properties of Mixtures of Moroccan Silica-Alumina Geomaterials and Alumina," New Journal of Glass and Ceramics, Vol. 3 No. 2, 2013, pp. 59-66. doi: 10.4236/njgc.2013.32010.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] M. Kolli, M. Hamidouche, G. Fantozzi and J. Chevalier, “Elaboration and Characterization of a Refractory Based on Algerian Kaolin,” Ceramics International, Vol. 33, No. 8, 2007, pp. 1435-1443. doi:10.1016/j.ceramint.2006.06.009
[2] B. Amrane, E. Ouedraogo, B. Mamen, S. Djaknoun and N. Mesrati, “Experimental Study of the Thermo-Mechanical Behaviour of Alumina-Silicate Refractory Materials Based on a Mixture of Algerian Kaolinitic Clays,” Ceramics International, Vol. 37, No. 8, 2011, pp. 3217-3227. doi:10.1016/j.ceramint.2011.05.095
[3] M. A. Sainz, F. J. Serrano, J. M. Amigo, J. Bastida and A. Caballero, “XRD Microstructural Analysis of Mullite Obtained from Kaolinite—Alumina Mixtures,” Journal of the European Ceramic Society, Vol. 20, No. 4, 2000, pp. 403-412. doi:10.1016/S0955-2219(99)00183-1
[4] J. Anggono, “Mullite Ceramics: Its Properties, Structure and Synthesis,” Jurnal Teknik Mesin, Vol. 7, No. 1, 2005, pp. 1-10.
[5] J. Poirier, “Les Céramiques Réfractaires, de l’Elaboration aux Propriétés d’Emploi,” Verres, Céramiques et Composites, Vol. 1, 2011, pp. 28-42.
[6] M. A. Sainz, F. J. Serrano, J. Bastidab and A. Caballero, “Microstructural Evolution and Growth of Crystallite Size of Mullite during Thermal Transformation of Kyanite,” Journal of the European Ceramic Society, Vol. 17, No. 11, 1997, pp. 1277-1284. doi:10.1016/S0955-2219(96)00231-2
[7] J. A. Santillan, H. B. Ramirez and R. C. Bradt, “Dense Mullite from Attrition Milled Kyanite and α-Alumina,” Journal of Ceramic Processing Research, Vol. 8, No. 1, 2007, pp. 1-11.
[8] C. Sadik, I. El Amrani and A. Albizane, “Silica-Alumina Refractory Synthesis Based on Moroccan Granitic Geo-Materials,” Journal of Chemical & Engineering, Vol. 7, No. 2, 2013 (in press).
[9] F. Sahnoune, M. Chegaar, N. Saheb, P. Goeuriot and F. Valdivieso, “Algerian Kaolinite Used for Mullite Formation App,” Clay Science, Vol. 38, No. 3-4, 2008, pp. 304-310. doi:10.1016/j.clay.2007.04.013
[10] M. L. Bouchetou, J. P. Ildefonse, J. Poirier and P. Daniellou, “Mullite Grown from Fired Andalusite Grains: The Role of Impurities and of the High Temperature Liquid Phase on the Kinetics of Mullitization and Consequences on Thermal Shocks Resistance,” Ceramics International, Vol. 31, No. 7, 2005, pp. 999-1005. doi:10.1016/j.ceramint.2004.10.015
[11] W. Pannhorts and H. Schneider, “The High-Temperature Transformation of Andalusite (Al2SiO5) into 3/2 Mullite (3Al2O3-2SiO2) and Vitreous Silica (SiO2),” Mining Magazine, Vol. 42, No. 322, 1978, pp. 195-198. doi:10.1180/minmag.1978.042.322.05
[12] C. Sadik, I. El Amrani and A. Albizane, “Influence de la Nature Chimique et Minéralogique des Argiles et du Processus de Fabrication sur la Qualité des Carreaux Céramiques,” MATEC Web, Conf., Vol. 2, 2012, Article ID: 01016. doi:10.1051/matecconf/20120201016
[13] ASTM C 326-03, “Standard Test Method for Drying and Firing Shrinkages of Ceramic Whiteware Clays, Volume 15-02, Glass and Ceramic,” 2006.
[14] ASTM C373-88, “Standard Test Method for Water Absorption, Bulk Density, Apparent Porosity, and Apparent Specific Gravity of Fired White Ware Products, Volume 15-02, Glass and Ceramic,” 2006.
[15] ASTM C674-88, “Standard Test Methods for Flexural Properties of Ceramic White Ware Materials, Volume 15-02, Glass and Ceramic,” 2006.
[16] F. G. Bennadji, “Matériaux de mullite à microstructure organisée composés d’assemblages muscovite—kaolinite,” Thèse, Faculté des Sciences et Techniques, Groupe d’Etude des Matériaux Hétérogènes. Université de Limoges, Limoges, 2007, p. 141.
[17] N. El Yakoubi, M. Aberkan and M. Ouadia, “Potentialité d’Utilisation d’Argiles Marocaines de Jbel Kharrou Dans l’Industrie Céramique,” Comptes Rendus Geoscience, Vol. 338, No. 10, 2006, pp. 693-702. doi:10.1016/j.crte.2006.03.017
[18] BS EN 993-16, “Methods of Test for Dense Shaped Re-Fractory Products. Determination of Resistance to Sul-Phuric Acide,” 1995.

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.