Why antibiotics: A comparative evaluation of different hypotheses for the natural role of antibiotics and an evolutionary synthesis


Although secondary metabolites with antimicrobial and other bioactivities are explored extensively, the natural or ecological role(s) of secondary metabolites is not yet clearly known. We review here the different hypotheses for the ecological role of antibiotics, with particular focus on the genus Streptomyces which is unparalleled in the richness of secondary metabolites. We first lay down our expectations from an ecological hypothesis for antibiotics and then weigh the six predominant hypotheses against them including antibiotics as weapons in competition, as aid in sporulation, as bartered benefits in symbioses, as signal molecules in community homeostasis, as weapons in predation and as metabolic waste or bi-products. The analysis shows that no single hypothesis meets all the expectations. While the waste or bi-product hypothesis can safely be eliminated all others have some evidence in support. It is possible therefore that antibiotics serve a multitude of ecological functions and it is possible to visualize a pathway for the radiating functions. According to this synthesis antibiotics evolved primarily as weapons in predation on other microorganisms. The inevitable co-evolution with prey species led to diversification of the genes and pathways. Some of the secondary metabolites eventually radiated to acquire other functions such as competition between predators. Some secondary metabolites evolved animal toxicity as a mutualistic barter to protect the symbiotic partner from grazing/predation by animals. Transcription modulation primarily evolved as activation of defense mechanisms by the prey which may have later radiated to serve interspecies signaling functions. The synthesis successfully links different functions of antibiotics with logical coherence.

Share and Cite:

Kumbhar, C. and Watve, M. (2013) Why antibiotics: A comparative evaluation of different hypotheses for the natural role of antibiotics and an evolutionary synthesis. Natural Science, 5, 26-40. doi: 10.4236/ns.2013.54A005.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] Watve, M., Tickoo, R., Jog, M. and Bhole, B. (2001) How many antibiotics are produced by the genus Streptomyces? Archives of Microbiology, 176, 386-390. doi:10.1007/s002030100345
[2] Challis, G.L. and Hopwood, D.A. (2003) Synergy and contingency as driving forces for the evolution of multiple secondary metabolite production by Streptomyces species. Proceedings of the National Academy of Sciences of the USA, 100, 14555-14561. doi:10.1073/pnas.1934677100
[3] Adegboye, M.F. and Babalola, O.O. (2012) Taxonomy and ecology of antibiotic producing actinomycetes. African Journal of Agricultural Research, 7, 2255-2261.
[4] Bentley, S.D., Chater, K.F., Cerdeno-Tarraga, A.-M., Challis, G.L., Thomson, N.R., James, K.D., Harris, D.E., Quail, M.A., Kieser, H., Harper, D., Bateman, A., Brown, S., Chandra, G., Chen, C.W., Collins, M., Cronin, A., Fraser, A., Goble, A., Hidalgo, J., Hornsby, T., Howarth, S., Huang, C.-H., Kieser, T., Larke, L., Murphy, L., Oliver, K., O’Neil, S., Rabbinowitsch, E., Rajandream, M.-A., Rutherford, K., Rutter, S., Seeger, K., Saunders, D., Sharp, S., Squares, R., Squares, S., Taylor, K., Warren, T., Wietzorrek, A., Woodward, J., Barrell, B.G., Parkhill, J. and Hopwood, D.A. (2002) Complete genome sequence of the model actinomycete Streptomyces coelicolor A3(2). Nature, 417, 141-147. doi:10.1038/417141a
[5] Jayapal, K.P., Lian, W., Glod, F., Sherman, D.H. and Hu, W.-S. (2007) Comparative genomic hybridizations reveal absence of large Streptomyces coelicolor genomic islands in Streptomyces lividans. BMC Genomics, 8, 229. doi:10.1186/1471-2164-8-229
[6] Udwary, D.W., Zeigler, L., Asolkar, R.N., Singan, V., Lapidus, A., Fenical, W., Jensen, P.R. and Moore, B.S. (2007) Genome sequencing reveals complex secondary metabolome in the marine actinomycete Salinispora tropica. Proceedings of the National Academy of Sciences of the USA, 104, 10376-10381. doi:10.1073/pnas.0700962104
[7] Nett, M., Ikeda, H. and Moore, B.S. (2009) Genomic basis for natural product biosynthetic diversity in the actinomycetes. Natural product reports, 26, 1362-1384. doi:10.1039/b817069j
[8] Rosamond, J. and Allsop, A. (2000) Harnessing the power of the genome in the search for new antibiotics. Science, 287, 1973-1976. doi:10.1126/science.287.5460.1973
[9] Baltz, R. (2007) Antimicrobials from Actinomycetes: Back to the Future. Microbe, 2, 125-131.
[10] Jenke-Kodama, H., Müller, R. and Dittmann, E. (2008) Evolutionary mechanisms underlying secondary metabolite diversity. Progress in Drug Research, 65, 121-140.
[11] Hesseltine, C.W. (1972) Biotechnology report: Solid state fermentations. Biotechnology and Bioengineering, 14, 517-532. doi:10.1002/bit.260140402
[12] Raimbault, M. (1998) General and microbiological aspects of solid substrate fermentation. Electronic Journal of Biotechnology, 1, 26-27. doi:10.2225/vol1-issue3-fulltext-9
[13] Pérez-Guerra, N., Torrado-Agrasar, A., López-Macias, C. and Pastrana, L. (2003) Main characteristics and applications of solid substrate fermentation. Electronic Journal of Environmental, Agricultural and Food Chemistry, 2, 1579-4377.
[14] Krishna, C. (2005) Solid-state fermentation systems-an overview. Critical Reviews in Biotechnology, 25, 1-30. doi:10.1080/07388550590925383
[15] Soares, V.F., Castilho, L.R., Bon, E.P.S. and Freire, D.M.G. (2005) High-yield Bacillus subtilis protease production by solid-state fermentation. Applied Biochemistry and Biotechnology, 121, 311-319. doi:10.1385/ABAB:121:1-3:0311
[16] Goh, E.-B. Yim, G., Tsui, W., McClure, J., Surette, M.G. and Davies, J. (2002) Transcriptional modulation of bacterial gene expression by subinhibitory concentrations of antibiotics. Proceedings of the National Academy of Sciences of the USA, 99, 17025-17030. doi:10.1073/pnas.252607699
[17] Blázquez, J., Gómez-Gómez, J.-M., Oliver, A., Juan, C., Kapur, V. and Martín, S. (2006) PBP3 inhibition elicits adaptive responses in Pseudomonas aeruginosa. Molecular Microbiology, 62, 84-99. doi:10.1111/j.1365-2958.2006.05366.x
[18] Linares, J.F., Gustafsson, I., Baquero, F. and Martinez, J.L. (2006) Antibiotics as intermicrobial signaling agents instead of weapons. Proceedings of the National Academy of Sciences of the USA, 103, 19484-19489. doi:10.1073/pnas.0608949103
[19] Waksman, S. (1961) The Actinomycetes classification, identification and description of genera and species. Literary Licensing, LLC.
[20] Gottlieb, D. (1976) The production and role of antibiotics in soil. The Journal of Antibiotics, 29, 987-1000. doi:10.7164/antibiotics.29.987
[21] Katz, E. and Demain, A.L. (1977) The peptide antibiotics of Bacillus: Chemistry, biogenesis, and possible functions. Bacteriological Reviews, 41, 449-474.
[22] Malik, V.S. (1980) Microbial secondary metabolism. Trends in Biochemical Sciences, 5, 68-72. doi:10.1016/0968-0004(80)90071-7
[23] Martin, J.F. and Demain, A.L. (1980) Control of antibiotic biosynthesis. Microbiological Reviews, 44, 230-251.
[24] Fredrickson, A. and Stephanopoulos, G. (1981) Microbial competition. Science, 213, 972-979. doi:10.1126/science.7268409
[25] Williams, S. and Vickers, J. (1986) The ecology of antibiotic production. Microbial Ecology, 12, 43-52. doi:10.1007/BF02153221
[26] Williams, D.H., Stone, M.J., Hauck, P.R. and Rahman, S.K. (1989) Why are secondary metabolites (natural products) biosynthesized? Journal of Natural Products, 52, 1189-1208. doi:10.1021/np50066a001
[27] Kolter, R. and Moreno, F. (1992) Genetics of ribosomally synthesized peptide antibiotics. Annual Review of Microbiology, 46, 141-161. doi:10.1146/annurev.mi.46.100192.001041
[28] Baba, T. and Schneewind, O. (1998) Instruments of microbial warfare: Bacteriocin synthesis, toxicity and immunity. Trends in Microbiology, 6, 66-71. doi:10.1016/S0966-842X(97)01196-7
[29] Rasool, K.A. and Wimpenny, J.W.T. (1982) Mixed continuous culture experiments with an antibiotic-producing Streptomycete and Escherichia coli. Microbial Ecology, 8, 267-277. doi:10.1007/BF02011430
[30] Turpin, P.E., Dhir, V.K., Maycroft, K.A., Rowlands, C. and Wellington, E.M.H. (1992) The effect of Streptomyces species on the survival of Salmonella in soil. FEMS Microbiology Letters, 101, 271-280. doi:10.1111/j.1574-6968.1992.tb05784.x
[31] Wiener, P. (1996) Experimental studies on the ecological role of antibiotic production in bacteria. Evolutionary Ecology, 10, 405-421. doi:10.1007/BF01237726
[32] De Lorenzo, V., Martínez, J.L. and Asensio, C. (1984) Microcin-mediated interactions between Klebsiella pneumoniae and Escherichia coli strains. Journal of General Microbiology, 130, 391-400.
[33] Manske, R.H.F., Holmes, H.L. and James, W. (1950) The alkaloids: Chemistry and physiology. Academic press, New York.
[34] Mothes, K. (1955) Physiology of alkaloids. Annual Review of Plant Physiology, 6, 393-432. doi:10.1146/annurev.pp.06.060155.002141
[35] Turner, W.B. (1971) Fungal metabolites. Academic Press, London.
[36] Luckner, M. (1972) Secondary metabolism in plants and animals. Academic Press, London.
[37] Robinson, T. (1974) Metabolism and function of alkaloids in plants. Science, 184, 430-435. doi:10.1126/science.184.4135.430
[38] Swain, T. (1977) Secondary compounds as protective agents. Annual Review of Plant Physiology, 28, 479-501. doi:10.1146/annurev.pp.28.060177.002403
[39] Haslam, E. (1986) Secondary metabolism-fact and fiction. Natural Product Reports, 3, 217-249. doi:10.1039/np9860300217
[40] Neidleman, S.L. (1989) Advances in applied microbialogy. Academic Press, London.
[41] Vining, L.C. (1990) Functions of Secondary Metabolites. Annual Review of Microbiology, 44, 395-427. doi:10.1146/annurev.mi.44.100190.002143
[42] Seigler, D.S. (1998) Plant secondary metabolism. Springer, US.
[43] Hartmann, T. (2007) From waste products to ecochemicals: Fifty years research of plant secondary metabolism. Phytochemistry, 68, 2831-2846. doi:10.1016/j.phytochem.2007.09.017
[44] Dworkin, M.M., Rosenberg, E. and Schleifer, K.-H. (2006) The prokaryotes, a handbook on the biology of bacteria: Eco-physiology. Springer, US.
[45] Adamidis, T., Riggle, P. and Champness, W. (1990) Mutations in a new Streptomyces coelicolor locus which globally block antibiotic biosynthesis but not sporulation. Journal of Bacteriology, 172, 2962-2969.
[46] Ueda, K., Kawai, S., Ogawa, H., Kiyama, A., Kubota, T., Kawanobe, H. and Beppu, T. (2000) Wide distribution of interspecific stimulatory events on antibiotic production and sporulation among Streptomyces species. The Journal of Antibiotics, 53, 979-982. doi:10.7164/antibiotics.53.979
[47] Kaltenpoth, M., Göttler, W., Herzner, G. and Strohm, E. (2005) Symbiotic bacteria protect wasp larvae from fungal infestation. Current Biology, 15, 475-479. doi:10.1016/j.cub.2004.12.084
[48] Kroiss, J., Kaltenpoth, M., Schneider, B., Schwinger, M.-G., Hertweck, C., Maddula, R.K., Strohm, E. and Svatos, A. (2010) Symbiotic streptomycetes provide antibiotic combination prophylaxis for wasp offspring. Nature Chemical Biology, 6, 261-263. doi:10.1038/nchembio.331?
[49] Becking, J.H. (1970) Plant-endophyte symbiosis in non-leguminous plants. Plant and Soil, 32, 611-654. doi:10.1007/BF01372898
[50] Klemmedson, J.O. (1979) Ecological Importance of Actinomycete-Nodulated Plants in the Western United States. Botanical Gazette, 140, S91-S96. doi:10.1086/337042
[51] Goodfellow, M. and Williams, S.T. (1983) Ecology of actinomycetes. Annual Review of Microbiology, 37, 189-216. doi:10.1146/annurev.mi.37.100183.001201
[52] Currie, C.R. (2001) A community of ants, fungi, and bacteria: A multilateral approach to studying symbiosis. Annual Review of Microbiology, 55, 357-380. doi:10.1146/annurev.micro.55.1.357
[53] Currie, C.R., Bot, A.N.M. and Boomsma, J.J. (2003) Experimental evidence of a tripartite mutualism: Bacteria protect ant fungus gardens from specialized parasites. Oikos, 101, 91-102. doi:10.1034/j.1600-0706.2003.12036.x
[54] Currie, C.R., Scott, J.A., Summerbell, R.C. and Malloch, D. (2003) Corrigendum: Fungus-growing ants use antibiotic-producing bacteria to control garden parasites. Nature, 423, 461. doi:10.1038/nature01563
[55] Cafaro, M.J. and Currie, C.R. (2005) Phylogenetic analysis of mutualistic filamentous bacteria associated with fungus-growing ants. Canadian Journal of Microbiology, 51, 441-446. doi:10.1139/w05-023
[56] Currie, C.R., Poulsen, M., Mendenhall, J., Boomsma, J.J. and Billen, J. (2006) Coevolved crypts and exocrine glands support mutualistic bacteria in fungus-growing ants. Science, 311, 81-83. doi:10.1126/science.1119744
[57] Mueller, U.G., Dash, D., Rabeling, C. and Rodrigues, A. (2008) Coevolution between attine ants and actinomycete bacteria: A reevaluation. Evolution, 62, 2894-2912. doi:10.1111/j.1558-5646.2008.00501.x
[58] Poulsen, M., Bot, A.N.M., Currie, C.R., Nielsen, M.G. and Boomsma, J.J. (2003) Within-colony transmission and the cost of a mutualistic bacterium in the leaf-cutting ant acromyrmex octospinosus. Functional Ecology, 17, 260-269. doi:10.1046/j.1365-2435.2003.00726.x
[59] Poulsen, M., Cafaro, M., Boomsma, J.J. and Currie, C.R. (2005) Specificity of the mutualistic association between actinomycete bacteria and two sympatric species of acromyrmex leaf-cutting ants. Molecular Ecology, 14, 3597-3604. doi:10.1111/j.1365-294X.2005.02695.x
[60] Lee, J.H. and Lee, H.K. (2001) Microbial symbiosis in marine sponges. Society, 39, 254-264.
[61] Gandhimathi, R., Arunkumar, M., Selvin, J., Thangavelu, T., Sivaramakrishnan, S., Kiran, G.S., Shanmughapriya, S. and Natarajaseenivasan, K. (2008) Antimicrobial potential of sponge associated marine actinomycetes. Journal of Medical Mycology, 18, 16-22.
[62] Sabarathnam, B., Manilal, A., Sujith, S., Kiran, G.S., Selvin, J., Thomas, A. and Ravji, R. (2010) Role of sponge associated actinomycetes in the marine phosphorrous biogeochemical cycles. American-Eurasian Journal of Agriculture and Environmental Sciences, 8, 253-256.
[63] McLain, E.E. (2006) Actinomycetes and antibiotics Host defense through symbiosis
[64] Davies, J. (1990) What are antibiotics? Archaic functions for modern activities. Molecular Microbiology, 4, 1227-1232. doi:10.1111/j.1365-2958.1990.tb00701.x
[65] Davies, J. (2006) Are antibiotics naturally antibiotics? Journal of Industrial Microbiology and Biotechnology, 33, 496-499. doi:10.1007/s10295-006-0112-5
[66] Davies, J., Spiegelman, G.B. and Yim, G. (2006) The world of subinhibitory antibiotic concentrations. Current Opinion in Microbiology, 9, 445-453. doi:10.1016/j.mib.2006.08.006
[67] Diggle, S.P., Gardner, A., West, S.A. and Griffin, A.S. (2007) Evolutionary theory of bacterial quorum sensing: When is a signal not a signal? Philosophical Transactions of the Royal Society B: Biological Sciences, 362, 1241-1249. doi:10.1098/rstb.2007.2049
[68] Yim, G., Wang, H.H. and Davies, J. (2006) The truth about antibiotics. International Journal of Medical Microbiology, 296, 163-170. doi:10.1016/j.ijmm.2006.01.039
[69] Yim, G., Wang, H.H. and Davies F.R.S.J. (2007) Antibiotics as signalling molecules. Philosophical Transactions of the Royal Society B: Biological Sciences, 362, 1195 -1200. doi:10.1098/rstb.2007.2044
[70] Xiao, Y., Wei, X., Ebright, R. and Wall, D. (2011) Antibiotic production by myxobacteria plays a role in predation. Journal of Bacteriology, 193, 4626-4633. doi:10.1128/JB.05052-11
[71] Casida Jr., L.E. (1988) Minireview: Nonobligate bacterial predation of bacteria in soil. Microbial Ecology, 15, 1-8. doi:10.1007/BF02012948
[72] Casida Jr., L.E. (1982) Ensifer adhaerens gen. nov., sp. nov.: A bacterial predator of bacteria in soil. International Journal of Systematic Bacteriology, 32, 339-345. doi:10.1099/00207713-32-3-339
[73] Watve, M. and Kumbhar, C. (2007) Streptomyces sp. as predators of bacteria. Nature Proceedings. http://precedings.nature.com/documents/1263/version/2
[74] Waksman, S.A. and Woodruff, H.B. (1941) Actinomyces antibioticus, a new soil organism antagonistic to pathogenic and non-pathogenic bacteria 1. Journal of Bacteriology, 42, 231-249.
[75] Rigali, S., Titgemeyer, F., Barends, S., Mulder, S., Thomae, A.W., Hopwood, D.A. and Van Wezel, G.P. (2008) Feast or famine: The global regulator DasR links nutrient stress to antibiotic production by Streptomyces. EMBO Reports, 9, 670-675. doi:10.1038/embor.2008.83
[76] Corno, G., Caravati, E., Callieri, C. and Bertoni, R. (2008) Effects of predation pressure on bacterial abundance, diversity, and size-structure distribution in an oligotrophic system. Journal of Limnology, 67, 107-119. doi:10.4081/jlimnol.2008.107
[77] Morgan, A.D., MacLean, R.C., Hillesland, K.L. and Velicer, G.J. (2010) Comparative analysis of myxococcus predation on soil bacteria. Applied and Environmental Microbiology, 76, 6920-6927. doi:10.1128/AEM.00414-10
[78] Demain, A.L. (1999) Pharmaceutically active secondary metabolites of microorganisms. Applied Microbiology and Biotechnology, 52, 455-463. doi:10.1007/s002530051546
[79] Hoffman, L.R., D’Argenio, D.A., MacCoss, M.J., Zhang, Z., Jones, R.A. and Miller, S.I. (2005) Aminoglycoside antibiotics induce bacterial biofilm formation. Nature, 436, 1171-1175. doi:10.1038/nature03912
[80] Bader, M.W., Navarre, W.W., Shiau, W., Nikaido, H., Frye, J.G., McClelland, M., Fang, F.C. and Miller, S.I. (2003) Regulation of Salmonella typhimurium virulence gene expression by cationic antimicrobial peptides. Molecular Microbiology, 50, 219-230. doi:10.1046/j.1365-2958.2003.03675.x
[81] Allison, D.G. and Gilbert, P. (1995) Modification by surface association of antimicrobial susceptibility of bacterial populations. Journal of Industrial Microbiology and Biotechnology, 15, 311-317. doi:10.1007/BF01569985
[82] Gore, J., Youk, H. and Van Oudenaarden, A. (2009) Snowdrift game dynamics and facultative cheating in yeast. Nature, 459, 253-256.
[83] Modak, T., Pradhan, S. and Watve, M. (2007) Sociobiology of biodegradation and the role of predatory protozoa in biodegrading communities. Journal of Biosciences, 32, 775-780. doi:10.1007/s12038-007-0078-0
[84] Oliynyk, M., Samborskyy, M., Lester, J.B., Mironenko, T., Scott, N., Dickens, S., Haydock, S.F. and Leadlay, P.F. (2007) Complete genome sequence of the erythromycin-producing bacterium Saccharopolyspora erythraea NRRL23338. Nature Biotechnology, 25, 447-453. doi:10.1038/nbt1297
[85] Velicer, G.J. and Vos, M. (2009) Sociobiology of the myxobacteria. Annual Review of Microbiology, 63, 599-623. doi:10.1146/annurev.micro.091208.073158
[86] Clardy, J., Fischbach, M. and Currie, C. (2009) The natural history of antibiotic. Current Biology, 19, R437-R441. doi:10.1016/j.cub.2009.04.001
[87] Watve, M., Shejval, V., Sonawane, C., Rahalkar, M., Matapurkar, A., Shouche, Y., Patole, M., Phadnis, N., Champhenkar, A., Damle, K., Karandikar, S., Kshirsagar V. and Jog, M. (2000) The “K” selected oligophilic bacteria: A key to uncultured diversity? Current Science, 78, 1535-1542.
[88] Nagarkar, P.P., Ravetkar, S.D. and Watve, M.G. (2001) Oligophilic bacteria as tools to monitor aseptic pharmaceutical production units. Applied and Environmental Microbiology, 67, 1371-1374. doi:10.1128/AEM.67.3.1371-1374.2001
[89] Pérez, J., Mu?oz-Dorado, J., Bra?a, A.F., Shimkets, L.J., Sevillano, L. and Santamaría, R.I. (2011) Myxococcus xanthus induces actinorhodin overproduction and aerial mycelium formation by Streptomyces coelicolor. Microbial Biotechnology, 4, 175-183.
[90] Fiedler, H.-P., Bruntner, C., Bull, A.T., Ward, A.C., Good-fellow, M., Potterat, O., Puder, C. and Mihm, G. (2005) Marine actinomycetes as a source of novel secondary metabolites. Antonie Van Leeuwenhoek, 87, 37-42. doi:10.1007/s10482-004-6538-8
[91] Imamura, N., Nishijima, M., Adachi, K. and Sano, H. (1993) Novel antimycin antibiotics, urauchimycins A and B, produced by marine actinomycete. The Journal of Antibiotics, 46, 241-246. doi:10.7164/antibiotics.46.241
[92] Manage, P.M., Kawabata, Z. and Nakano, S. (2000) Algicidal effect of the bacterium Alcaligenes denitrificans on Microcystis spp. Aquatic Microbial Ecology, 22, 111-117. doi:10.3354/ame022111
[93] Sayyed, R. and Chincholkar, S. (2009) Siderophore-Producing Alcaligenes feacalis Exhibited More Biocontrol Potential Vis-à-Vis Chemical Fungicide. Current Microbiology, 58, 47-51. doi:10.1007/s00284-008-9264-z
[94] Sayyed, R.Z. and Chincholkar, S.B. (2006) Purification of siderophores of Alcaligenes faecalis on Amberlite XAD. Bioresource Technology, 97, 1026-1029. doi:10.1016/j.biortech.2005.04.045
[95] Yutani, M., Taniguchi, H., Borjihan, H., Ogita, A., Fujita, K.-I. and Tanaka, T. (2011) Alliinase from Ensifer adhaerens and its use for generation of fungicidal activity. AMB Express, 1, 2. doi:10.1186/2191-0855-1-2
[96] Ogita, A., Fujita, K.-I. and Tanaka, T. (2012) Enhancing effects on vacuole-targeting fungicidal activity of amphotericin B. Frontiers in Microbiology, 3, 100.
[97] Germida, J.J. and Casida, L.E. (1983) Ensifer adhaerens predatory activity against other bacteria in soil, as monitored by indirect phage analysis. Applied and Environmental Microbiology, 45, 1380-1388.
[98] Druga, B., Suteu, D., Rosca-Casian, O., Parvu, M. and Dragos, N. (2011) Two novel Alliin lyase (alliinase) genes from twisted-leaf garlic (Allium obliquum) and mountain garlic (Allium senescens ssp. montanum). Notulae Botanicae Horti Agrobotanici, Cluj-Napoca, 39, 293-298.
[99] Davidov, Y., Huchon, D., Koval, S.F. and Jurkevitch, E. (2006) A new α-proteobacterial clade of bdellovibrio-like predators: Implications for the mitochondrial endosymbiotic theory. Environmental Microbiology, 8, 2179-2188. doi:10.1111/j.1462-2920.2006.01101.x
[100] Wang, Z., Kadouri, D.E. and Wu, M. (2011) Genomic insights into an obligate epibiotic bacterial predator: Micavibrio aeruginosavorus ARL-13. BMC Genomics, 12, 453. doi:10.1186/1471-2164-12-453
[101] Lambina, V.A., Afinogenova, A.V., Romay Penobad, Z., Konovalova, S.M. and Andreev, L.V. (1983) New species of exoparasitic bacteria of the genus Micavibrio infecting gram-positive bacteria. Mikrobiologiia, 52, 777-780.
[102] Dashiff, A., Junka, R. A., Libera, M. and Kadouri, D. E. (2011) Predation of human pathogens by the predatory bacteria Micavibrio aeruginosavorus and Bdellovibrio bacteriovorus. Journal of Applied Microbiology, 110, 431-444. doi:10.1111/j.1365-2672.2010.04900.x
[103] Kadouri, D., Venzon, N.C. and O’Toole, G.A. (2007) Vulnerability of Pathogenic Biofilms to Micavibrio aeruginosavorus. Applied and Environmental Microbiology, 73, 605-614. doi:10.1128/AEM.01893-06
[104] Makkar, N.S. and Casida, L.E. (1987) Cupriavidus necator gen. nov., sp. nov: A nonobligate bacterial predator of bacteria in soil. International Journal of Systematic Bacteriology, 37, 323-326. doi:10.1099/00207713-37-4-323
[105] Casida, L.E. (1988) Response in soil of Cupriavidus necator and other copper-resistant bacterial predators of bacteria to addition of water, soluble nutrients, various bacterial species, or Bacillus thuringiensis spores and crystals. Applied and Environmental Microbiology, 54, 2161-2166.
[106] Kreutzer, M.F., Kage, H. and Nett, M. (2012) Structure and biosynthetic assembly of cupriachelin, a photoreactive siderophore from the bioplastic producer Cupriavidus necator H16. Journal of the American Chemical Society, 134, 5415-5422. doi:10.1021/ja300620z
[107] Casida, L.E. (1992) Competitive ability and survival in soil of Pseudomonas strain 679-2, a dominant, nonobligate bacterial predator of bacteria. Applied and Environmental Microbiology, 58, 32-37.
[108] Cain, C.C., Lee, D., Waldo 3rd, R.H., Henry, A.T., Casida Jr., E.J., Wani, M.C., Wall, M.E., Oberlies, N.H. and Falkinham 3rd, J.O. (2003) Synergistic antimicrobial activity of metabolites produced by a nonobligate bacterial predator. Antimicrobial Agents Chemotherapy, 47, 2113-2117. doi:10.1128/AAC.47.7.2113-2117.2003
[109] Li, S., Jochum, C.C., Yu, F., Zaleta-Rivera, K., Du, L., Harris, S.D. and Yuen, G.Y. (2008) An antibiotic complex from Lysobacter enzymogenes strain C3: Antimicrobial activity and role in plant disease control. Phytopathology, 98, 695-701. doi:10.1094/PHYTO-98-6-0695
[110] Ji, G.-H., Wei, L.-F., He, Y.-Q., Wu, Y.-P. and Bai, X.-H. (2008) Biological control of rice bacterial blight by Lysobacter antibioticus strain 13-1. Biological Control, 45, 288-296. doi:10.1016/j.biocontrol.2008.01.004
[111] Ensign, J.C. and Wolfe, R.S. (1966) Characterization of a Small proteolytic enzyme which lyses bacterial cell walls. Journal of Bacteriology, 91, 524-534.
[112] Daft, M.J., McCord, S.B. and Stewart, W.D.P. (1975) Ecological studies on algallysing bacteria in fresh waters. Freshwater Biology, 5, 577-596. doi:10.1111/j.1365-2427.1975.tb00157.x
[113] Zhang, W., Li, Y., Qian, G., Wang, Y., Chen, H., Li, Y.-Z., Liu, F., Shen, Y. and Du, L. (2011) Identification and characterization of the anti-mrsa WAP-8294A2 biosynthetic gene cluster from Lysobacter enzymogenes OH11. antimicrob. Agents Chemother. http://aac.asm.org/content/early/2011/09/19/AAC.05370-11
[114] Ensign, J.C. and Wolfe, R.S. (1965) Lysis of bacterial cell walls by an enzyme isolated from a myxobacter. Journal of Bacteriology, 90, 395-402.
[115] Park, J.H., Kim, R., Aslam, Z., Jeon, C.O. and Chung, Y.R. (2008) Lysobacter capsici sp. nov., with antimicrobial activity, isolated from the rhizosphere of pepper, and emended description of the genus Lysobacter. International Journal of Systematic and Evolutionary Microbiology, 58, 387-392. doi:10.1099/ijs.0.65290-0
[116] Bonner, D.P., O’Sullivan, J., Tanaka, S.K., Clark, J.M. and Whitney, R.R. (1988) Lysobactin, a novel antibacterial agent produced by Lysobacter sp. II. Biological properties. The Journal of Antibiotics, 41, 1745.
[117] Hashizume, H., Hirosawa, S., Sawa, R., Muraoka, Y., Ikeda, D., Naganawa, H. and Igarashi, M. (2004) Tripropeptins, novel antimicrobial agents produced by lysobacter sp. Part 2. Structure elucidation. ChemInform, 35.
[118] Nakayama, T., Homma, Y., Hashidoko, Y., Mizutani, J. and Tahara, S. (1999) Possible role of xanthobaccins produced by Stenotrophomonas sp. strain SB-K88 in suppression of sugar beet damping-off disease. Applied and Environmental Microbiology, 65, 4334-4339.
[119] Alonso, A., Sanchez, P. and Martínez, J.L. (2000) Steno-trophomonas maltophilia D457R contains a cluster of genes from gram-positive bacteria involved in antibiotic and heavy metal resistance. Antimicrobial Agents Chemotherapy, 44, 1778-1782. doi:10.1128/AAC.44.7.1778-1782.2000
[120] Ryan, R.P., Monchy, S., Cardinale, M., Taghavi, S., Crossman, L., Avison, M.B., Berg, G., Lelie van de, D. and Dow, J.M. (2009) The versatility and adaptation of bacteria from the genus Stenotrophomonas. Nature Reviews Microbiology, 7, 514-525.
[121] Shoji, J., Hinoo, H., Wakisaka, Y., Koizumi, K., Mayama, M. and Matsuura, S. (1977) Isolation of two new polymyxin group antibiotics. (Studies on antibiotics from the genus Bacillus. XX). The Journal of Antibiotics, 30, 1029-1034. doi:10.7164/antibiotics.30.1029
[122] Lim, H.-S., Kim, Y.-S. and Kim, S.-D. (1991) Pseudomonas stutzeri YPL-1 genetic transformation and antifungal mechanism against Fusarium solani, an agent of plant root rot. Antimicrobial Agents Chemotherapy, 57, 510-516.
[123] Leisinger, T. and Margraff, R. (1979) Secondary metabolites of the fluorescent Pseudomonads. Microbiological Reviews, 43, 422-442.
[124] Gumbo, J.R. (2010). The isolation and identification of predatory bacteria from a Microcystis algal bloom. African Journal of Biotechnology, 9, 663-671.
[125] Vining, L.C. (1990) Functions of secondary metabolites. Annual Review of Microbiology, 44, 395-427. doi:10.1146/annurev.mi.44.100190.002143
[126] Jurkevitch, E. (2007) Predatory behaviors in bacteria—Diversity and transitions. American Society for Microbiology, 2, 67-72.
[127] Chen, H., Young, S., Berhane, T.-K. and Williams, H.N. (2012) Predatory Bacteriovorax communities ordered by various prey species. PLoS ONE, 7, 34174. doi:10.1371/journal.pone.0034174
[128] McBride, M.J. and Zusman, D.R. (1996) Behavioral analysis of single cells of Myxococcus xanthus in response to prey cells of Escherichia coli. FEMS Microbiology Letters, 137, 227-231. doi:10.1111/j.1574-6968.1996.tb08110.x
[129] Erol, O., Schäberle, T.F., Schmitz, A., Rachid, S., Gurgui, C., El Omari, M., Lohr, F., Kehraus, S., Piel, J., Müller, R. and König, G.M. (2010) Biosynthesis of the myxobacterial antibiotic corallopyronin A. ChemBioChem, 11, 1253-1265.
[130] Suzuki, Y., Ojika, M. and Sakagami, Y. (2004) Biotransformation of cystothiazole A, a myxobacterial antibiotic, into novel derivatives by the mother producer, Cystobacter fuscus. Bioscience, Biotechnology, Biochemistry, 68, 390-396. doi:10.1271/bbb.68.390
[131] Schäberle, T.F., Goralski, E., Neu, E., Erol, Ö., Hölzl, G., Dörmann, P., Bierbaum, G. and König, G.M. (2010) Marine Myxobacteria as a source of antibiotics—comparison of physiology, polyketide-type genes and antibiotic production of three new isolates of Enhygromyxa salina. Marine Drugs, 8, 2466-2479. doi:10.3390/md8092466
[132] Singh, B.N. (1947) Myxobacteria in soils and composts; their distribution, number and lytic action on bacteria. Microbiology, 1, 1-10.
[133] Gaspari, F., Paitan, Y., Mainini, M., Losi, D., Ron, E. Z. and Marinelli, F. (2005) Myxobacteria isolated in Israel as potential source of new anti-infectives. Journal of Applied Microbiology, 98, 429-439. doi:10.1111/j.1365-2672.2004.02477.x
[134] Beebe, J.M. (1941) The Morphology and cytology of Myxococcus xanthus, N. Sp. 1. Journal of Bacteriology, 42, 193-223.
[135] Shimkets, L., Dworkin, M. and Reichenbach, H. (2006) The Myxobacteria. In: Dworkin, M., Falkow, S., Rosenberg, E., Schleifer, K.-H. and Stackebrandt, E., Eds. The Prokaryotes, Springer, New York, 31-115. http://www.springerlink.com/content/q6033452111246hh/abstract/
[136] Trick, I. and Lingens, F. (1984) Characterization of Her-petosiphon spec.—A gliding filamentous bacterium from bulking sludge. Applied Microbiology and Biotechnology, 19, 191-198. doi:10.1007/BF00256453
[137] Quinn, G. and Skerman, V. (1980) Herpetosiphon—Nature’s scavenger? Current Microbiology, 4, 57-62. doi:10.1007/BF02602893
[138] Nett, M., Erol,Ö., Kehraus, S., Köck, M., Krick, A., Eguereva, E., Neu, E. and König, G.M. (2006) Siphonazole, an unusual metabolite from Herpetosiphon sp.. Angewandte Chemie International Edition, 45, 3863-3867.
[139] Furusawa, G., Yoshikawa, T., Yasuda, A. and Sakata, T. (2003) Algicidal activity and gliding motility of Saprospira sp. SS98-5. Canadian Journal of Microbiology, 49, 92-100. doi:10.1139/w03-017
[140] Saw, J., Yuryev, A., Kanbe, M., Hou, S., Young, A.G., Aizawa, S.-I. and Alam, M. (2012) Complete genome sequencing and analysis of Saprospira grandis str. Lewin, a predatory marine bacterium. Standards in Genomic Sciences, 6, 84-93.
[141] Mincer, T.J., Spyere, A., Jensen, P.R. and Fenical, W. (2004) Phylogenetic analyses and diterpenoid production by marine bacteria of the genus Saprospira. Current Microbiology, 49, 300-307. doi:10.1007/s00284-004-4358-8
[142] Lewin, R.A. (1997) Saprospira grandis, a flexibacterium that can catch bacterial prey by “ixotrophy”. Microbial Ecology, 34, 232-236. doi:10.1007/s002489900052
[143] Sangkhobol, V. and Skerman, V.B.D. (1981) Saprospira species—Natural predators. Current Microbiology, 5, 169-174. doi:10.1007/BF01578523
[144] Casida, L.E. (1983) Interaction of Agromyces ramosus with other bacteria in soil. Applied Microbiology and Biotechnology, 46, 881-888.
[145] Cherniakovskaia, T.F., Dobrovol’skaia, T.G. and Bab’eva, I.P. (2004) The ability of saprotrophic bacteria isolated from natural habitats to lyse yeasts. Mikrobiologiia, 73, 567-570.
[146] Arcamone, F., Cassinelli, G., Fantini, G., Grein, A., Orezzi, P., Pol, C. and Spalla, C. (1969) Adriamycin, 14-hydroxydaunomycin, a new antitumor antibiotic from S. Peucetius varcaesius. Biotechnology and Bioengineering, 11, 1101-1110. doi:10.1002/bit.260110607
[147] Casida, L.E. (1980) Bacterial predators of micrococcus luteus in soil. Applied Microbiology and Biotechnology, 39, 1035-1041.
[148] Cassinelli, G., Grein, A., Orezzi, P., Pennella, P. and Sanfilippo, A. (1967) New antibiotics produced by Strep-toverticillium orinoci, n. sp. Arch Mikrobiol, 55, 358-368. doi:10.1007/BF00406442
[149] Konev, I.E., Efimova, V.M., Etingov, E.D. and Zaval’-naia, N.M. (1978) Streptoverticillium griseoviridum n. sp., a producer of the candidin-amphotericin B group, antifungal heptaene nonaromatic antibiotic 0185. Antibiotiki, 23, 143-148.
[150] Evans, J.R., Napier, E.J. and Fletton, R.A. (1978) G1499-2, a new quinoline compound isolated from the fermentation broth of Cytophaga johnsonii. The Journal of Antibiotics, 31, 952-958. doi:10.7164/antibiotics.31.952
[151] Shaaban, M., Maskey, R.P., Wagner-Döbler, I. and La-atsch, H. (2002) Pharacine, a natural p-cyclophane and other indole derivatives from Cytophaga sp. strain AM13.1. Journal of Natural Products, 65, 1660-1663. doi:10.1021/np020019a?
[152] Rashidan, K.K. and Bird, D.F. (2001) Role of predatory bacteria in the termination of a Cyanobacterial bloom. Microbial Ecology, 41, 97-105.
[153] Ainsworth, G.C., Brown, A.M. and Brownlee. G. “Aero-sporin”, an Antibiotic Produced by Bacillus aerosporus Greer. http://www.nature.com/nature/journal/v160/n4060/abs/160263a0.html
[154] Gonzalez-Pastor, J.E., Hobbs, E.C. and Losick, R. (2003) Cannibalism by sporulating bacteria. Science, 301, 510-513. doi:10.1126/science.1086462
[155] Pichard, B., Larue, J.P. and Thouvenot, D. (1995) Gavaserin and saltavalin, new peptide antibiotics produced by Bacillus polymyxa. FEMS Microbiology Letters, 133, 215-218. doi:10.1111/j.1574-6968.1995.tb07887.x
[156] Al-Janabi, A.A.H.S. (2006) Identification of bacitracin produced by local isolate of Bacillus licheniformis. Jour-nal of Biotechnology, 5, 1600-1601.
[157] Bie, X.-M., Lü, F.-X., Lu, Z.-X., Huang, X.-Q. and Shen, J. (2006) Isolation and identification of lipopeptides produced by Bacillus subtilis fmbJ. Shengwu Gongcheng Xuebao/Chinese Journal of Biotechnology, 22, 644-649.
[158] Awais, M., Shah, A.A.L.I. and Hameed, A. (2007) Isola-tion, Identification and optimization of bacitracin produced by bacillus sp. Time, 39, 1303-1312.
[159] Nandy, S.K., Bapat, P.M. and Venkatesh, K.V. (2007) Sporulating bacteria prefers predation to cannibalism in mixed cultures. FEBS Letters, 581, 151-156. doi:10.1016/j.febslet.2006.12.011
[160] Stansly, P.G. and Schlosser, M.E. (1947) Studies on polymyxin: Isolation and identification of bacillus polymyxa and differentiation of polymyxin from certain known antibiotics. Journal of Bacteriology, 54, 549-556.
[161] Be’er, A., Zhang, H.P., Florin, E.-L., Payne, S.M., Ben-Jacob, E. and Swinney, H.L. (2009) Deadly competetion between sibling bacterial colonies. Proceedings of the National Academy of Sciences of the USA, 106, 428-433. doi:10.1073/pnas.0811816106
[162] Selim, S., Negrel, J., Govaerts, C., Gianinazzi, S. and Van Tuinen, D. (2005) Isolation and partial characterization of antagonistic peptides produced by Paenibacillus sp. strain B2 Isolated from the sorghum mycorrhizosphere. Applied Microbiology and Biotechnology, 71, 6501-6507. doi:10.1128/AEM.71.11.6501-6507.2005
[163] Beatty, P.H. and Jensen, S.E. (2002) Paenibacillus polymyxa produces fusaricidin-type antifungal antibiotics active against Leptosphaeria maculans, the causative agent of blackleg disease of canola. Canadian Journal of Microbiology, 48, 159-169. doi:10.1139/w02-002
[164] Raza, W., Yang, W. and Shen, Q.R. (2008) Paenibacillus polymyxa: Antibiotics, hydrolytic enzymes and hazard assessment. Journal of Plant Pathology, 90, 419-430.
[165] McBride, M.J., Xie, G., Martens, E.C., Lapidus, A., Henrissat, B., Rhodes, R.G., Goltsman, E., Wang, W., Xu, J., Hunnicutt, D.W., Staroscik, A.M., Hoover, T.R., Cheng, Y.-Q. and Stein, J.L. (2009) Novel features of the polysaccharide-digesting gliding bacterium Flavobacterium johnsoniae as revealed by genome sequence analysis. Applied Microbiology and Biotechnology, 75, 6864-6875. doi:10.1128/AEM.01495-09
[166] Banning, E.C. and Erin, C. (2010) Biology and potential biogeochemical impacts of novel predatory flavobacteria.

Copyright © 2021 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.