Reproductive isolation in the Elegans-Group of Caenorhabditis

Abstract

Reproductive isolation is the basis of the Biological Species Definition and can be a driving force of speciation. Theoretical studies have provided models of how reproductive isolation can arise within individual species. Genetic tests of these models are limited to populations in which reproductive isolation is present but not complete. Here, reproductive isolation in the Elgans-Group of the nematode genus Caenorhabditis is reviewed. Pre-mating barriers, assortative fertilization and post-zygotic barriers all have been observed in this clade. In some combinations of species, fertile F1 hybrids can be obtained. Therefore, the Elegans-Group of Caenorhabditis is poised to become an important experimental system for the study of reproductive isolation.


Share and Cite:

Baird, S. and Seibert, S. (2013) Reproductive isolation in the Elegans-Group of Caenorhabditis. Natural Science, 5, 18-25. doi: 10.4236/ns.2013.54A004.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] Mayr, E. (1963) Animal species and evolution. Belknap Press, Harvard.
[2] Bateson, W. (1909) Heredity and variation in modern lights. In: Seward, A.C. Ed., Darwin and Modern Science, Cambridge University Press, Cambridge, 85-101.
[3] Dobzhansky, T. (1936) Studies on hybrid sterility. II. Localization of sterility factors in Drosophila pseudoobscura hybrids. American Naturalist, 71, 404-420.
[4] Muller, H.J. (1942) Isolating mechanisms, evolution, and temperature. Biology Symposium, 6, 71-125.
[5] Coyne, J.A. and Orr, H.A. (2004) Speciation. Sinauer, Sunderland.
[6] Wu, C.-I. (2001) The genic view of the process of speciation. Journal of Evolutionary Biology, 14, 851-865. doi:10.1046/j.1420-9101.2001.00335.x
[7] Payseur, B.A. (2010) Using differential introgression in hybrid zones to identify genomic regions involved in speciation. Molecular Ecology, 10, 806-820.
[8] Smadja, C.M. and Butlin, R.K. (2011) A framework for comparing processes of speciation in the presence of gene flow. Molecular Ecology, 20, 5123-5140. doi:10.1111/j.1365-294X.2011.05350.x
[9] Feder, J.L., Egan, S.P. and Nosil, P. (2012) The genomics of speciation-with-gene-flow. Trends in Genetics, 28, 342-350. doi:10.1016/j.tig.2012.03.009
[10] Markow, T.A. (1997) Assortative fertilization in Drosophila. Proceedings of the National Academy of Sciences of USA, 94, 7756-7760. doi:10.1073/pnas.94.15.7756
[11] Turelli, M., Barton, N.H. and Coyne, J.A. (2001) Theory and speciation. Trends in Ecology & Evolution, 16, 330-343.
[12] Servidio, M.R. (2009) The role of linkage disequilibrium in the evolution of premating isolation. Heredity, 102, 51-56. doi:10.1038/hdy.2008.98
[13] Baird, S.E., Sutherlin, M.E. and Emmons, S.W. (1992) Reproductive isolation in Rhabditidae (Nematoda: Secernentea); mechanisms that isolate six species of three genera. Evolution, 46, 585-594. doi:10.2307/2409629
[14] Baird, S.E. and Yen, W.-C. (2000) Reproductive isolation in Caenorhabditis: Terminal phenotypes of hybrid embryos. Evolution & Development, 2, 9-15. doi:10.1046/j.1525-142x.2000.00031.x
[15] Hill, K.L. and L’Hernault, S.W. (2001) Analyses of reproductive interactions that occur after heterospecific-matings within the genus Caenorhabditis. Evolution & Development, 232, 104-114. doi:10.1006/dbio.2000.0136
[16] Baird, S.E. (2002) Haldane’s rule by sexual transformation in Caenorhabditis. Genetics, 161, 1349-1353.
[17] Woodruff, G.C., Eke, O., Baird, S.E., Félix, M.-A. and Haag, E.S. (2010) Insights into species divergence and the evolution of hermaphroditism from fertile interspecies hybrids of Caenorhabditis nematodes. Genetics, 186, 997-1012. doi:10.1534/genetics.110.120550
[18] Dey, A., Jeon, Y., Wang, G.-X. and Cutter, A.D. (2012) Global population genetic structure of Caenorhabditisremanei reveals incipient speciation. Genetics, 191, 1257-1269. doi:10.1534/genetics.112.140418
[19] Kozlowska, J.L., Ahmad, A.R., Jahesh, E. and Cutter, A.D. (2011) Genetic variation for postzygotic reproductive isolation between Caenorhabditisbriggsae and Caenorhabditis sp. 9. Evolution, 66, 1180-1195. doi:10.1111/j.1558-5646.2011.01514.x
[20] Baird, S.E. and Stonesifer, R. (2012) Reproductive isolation in Caenorhabditisbriggsae: Dysgenic interactions between maternal-and zygotic-effect loci result in a delayed development phenotype. Worm, 1, in press. doi:10.4161/worm.23535
[21] Kiontke, K.C., Félix, M.-A., Ailion, M., Rockman, M.V., Braendle, C., Pénigault, J.-B. and Fitch, D.H.A. (2011) A phylogeny and molecular barcodes for Caenorhabditis, with numerous new species from rotting fruits. BMC Evolutionary Biology, 11, 339. doi:10.1186/1471-2148-11-339
[22] Félix, M.-A. and Duveau, F. (2012) Population dynamics and habitat sharing of natural populations of Caenorhab-ditiselegans and C. briggsae. BMC Biology, 10, 59. doi:10.1186/1741-7007-10-59
[23] Hu, P.J. (2007) Dauer. In: Worm Book, The C. elegans Research Community.
[24] Kiontke, K.C. and Sudhaus, W. (2006) Ecology of Caenorhabditis species. In: The C. elegans Research Community, Ed., WormBook.
[25] Avila, D., Helmcke, K. and Aschner, M. (2012) The Caenorhabditiselegans model as a reliable tool in neuro-toxicology. Human & Experimental Toxicology, 31, 236-243. doi:10.1177/0960327110392084
[26] Pukkila-Worley, R. and Ausubel, F.M. (2012) Immune defense mechanisms in the Caenorhabditis intestinal epithelium. Current Opinion in Immunology, 24, 3-9. doi:10.1016/j.coi.2011.10.004
[27] Furuhashi, H. and Kelly, W.G. (2010) The epigenetics of germ-line immortality: Lessons from an elegant model system. Development, Growth & Differentiation, 52, 527-532. doi:10.1111/j.1440-169X.2010.01179.x
[28] Fitch, D.H.A. and Thomas, W.K. (1997) Evolution. In: Riddle, D.L., Blumenthal, T., Meyer, J. and Priess, J.R., Eds. C. elegans II, CSHL Press, Cold Spring Harbor.
[29] Cutter, A.D., Dey, A. and Murray, R.L. (2009) Evolution of the Caenorhabditiselegans genome. Molecular Biology and Evolution, 26, 1199-1234. doi:10.1093/molbev/msp048
[30] Haag, E.S. (2005) The evolution of nematode sex determination: C. elegans as a reference point for comparative biology. In: The C. elegans Research Community, Ed., WormBook.
[31] Wood, W.B. (1988) The Nematode, Caenorhabditiselegans. Cold Spring Harbor Press, New York.
[32] Riddle, D.L., Blumenthal, T., Meyer, B.J. and Priess, J.R. (1997) C. elegans II. Cold Spring Harbor Press, New York.
[33] Sudhaus, W. and Kiontke, K. (1996) Phylogeny of rhabditis subgenus Caenorhabditis (Rhaditidae, Nematoda). Journal of Zoological Systematics and Evolutionary Research, 34, 217-233. doi:10.1111/j.1439-0469.1996.tb00827.x
[34] C. elegans (1998) Genome sequence of the nematode C. elegans: A platform for investigating biology. Science, 282, 2012-2017.
[35] Stein, L.D., Bao, Z., Blasiar, D., Blumenthal, T., Brent, M. R., Chen, N., Chinwalla, A., Clarke, L., Clee, C., Coghlan, A., Coulson, A., D'Eustachio, P., Fitch, D.H.A., Fulton, L.A., Fulton, R.E., Griffiths-Jones, S., Harris, T.W., Hillier, L.W., Kamath, R., Kuwabara, P.E., Mardis, E.R., Marra, M.A., Miner, T.L., Minx, P., Mullikin, J.C., Plumb, R.W., Rogers, J., Schein, J.E., Sohrmann, M., Spieth, J., Stajich, J.E., Wei, C., Willey, D., Wilson, R.K., Durbin R., and Waterston, R.H. (2003) The genome sequence of Caenorhabditisbriggsae: A platform for comparative genomics. PLoS Biology, 1, e45. doi:10.1371/journal.pbio.0000045
[36] Barrière, A., Yang, S.-P., Pekarek, E. Thomas, C.G., Haag, E.S. and Ruvinsky, I. (2009) Detecting heterozygosity in shotgun genome assemblies: lessons from obligately outcrossing nematodes. Gen. Res., 19, 470-480.
[37] Sudhaus, W. and Kiontke, K. (2007) Comparison of the cryptic nematode species Caenorhabditisbrenneri sp. n. and C. remanei (Nematoda: Rhabditidae) with the stem species pattern of the Caenorhabditiselegans group. Zootaxa, 1456, 45-62.
[38] Cutter, A.D., Yan, W., Tsvetkov, N. Sunil, S. and Félix, M.-A. (2010) Molecular population genetics and phenotypic sensitivity to ethanol for a globally diverse sample of the nematode Caenrhabditisbriggsae. Molecular Ecology, 19, 798-809. doi:10.1111/j.1365-294X.2009.04491.x
[39] Baird, S.E., Fitch, D.H.A. and Emmons, S.W. (1994) Caenorhabditis vulgaris sp. n. (Nematoda: Rhabditidae): A necromenic associate of pillbugs and snails. Nematologica, 40, 1-11. doi:10.1163/003525994X00012
[40] Baird, S.E. (1999) Natural and experimental associations of Caenorhabditisremanei with Trachelipusrathkii and other terrestrial isopods. Nematology, 1, 471-475. doi:10.1163/156854199508478
[41] Banerjee, P. and Singh, B.N. (2012) Interspecific sexual isolation and phylogeny among different members of the Drosophila bipectinata species complex. Genetica, 140, 75-81. doi:10.1007/s10709-012-9659-4
[42] Laturney, M. and Moehring, A.J. (2012) Fine-scale genetic analysis of species-specific female preference in Drosophila simulans. Journal of Evolutionary Biology, 25, 1718-1731. doi:10.1111/j.1420-9101.2012.02550.x
[43] Lipton, J., Kleemann, G. Ghosh, R., Lints, R. and Emmons, S.W. (2004) Mate searching in Caenorhabditiselegans: a genetic model for sex drive in a simple invertebrate. The Journal of Neuroscience, 24, 7427-7434. doi:10.1523/JNEUROSCI.1746-04.2004
[44] Barrios, A., Nurrish, S. and Emmons, S.W. (2008) Sensory regulation of C. elegans male mate-searching behavior. Current Biology, 18, 1865-1871. doi:10.1016/j.cub.2008.10.050
[45] Suzuki, N. and Yamaguchi, M. (1986) Species specific respiratory stimulation of sea urchin (Clypeaster japonicas) spermatozoa by an egg-associated factor. Zoological Science, 3, 801-806.
[46] Alves, A.-P., Mulloy, B., Diniz, J.A. and Mour?o, A.S. (1997) Sulfated polysaccharides from the egg jelly layer are species-specific inducers of acrosomal reactions in sperms of sea urchins. The Journal of Biological Chemistry, 272, 6965-6971. doi:10.1074/jbc.272.11.6965
[47] Kamei, N. and Glabe, C.G. (2003) The species-specific egg receptor for sea urchin sperm adhesion is ERB1, a novel ADAMTS protein. Genes & Development, 17, 2502-2507. doi:10.1101/gad.1133003
[48] Asada, N. and Kitagawa, O. (1988) Insemination reaction in the Drosophila nasuta subgroup. Japanese Journal of Genetics, 63, 137-148. doi:10.1266/jjg.63.137
[49] Pitnick, S., Miller, G.T., Schneider, K. and Markow, T.A. (2003) Ejaculate-female coevolution in Drosophila mohavensis. Proceedings of the Royal Society B, 270, 1507-1512. doi:10.1098/rspb.2003.2382
[50] Bono, J.M., Matzkin, L.M., Kelleher, E.S. and Markow, T.A. (2011) Postmating transcriptional changes in reproductive tracts of con-and heterospecifically mated Drosophila mojavenis females. Proceedings of the National Academy of Sciences of the United States of America, 108, 7878-7883. doi:10.1073/pnas.1100388108
[51] Kubagawa, H.M., Watts, J.L., Corrigan, C., Edmonds, J.W., Sztul, E., Browse, J. and Miller, M.A. (2006) Oocyte signals derived from polyunsaturated fatty acids control sperm recruitment in vivo. Nature Cell Biology, 8, 1143-1148. doi:10.1038/ncb1476
[52] Edmonds, J.W., Prasain, J.K., Dorand, D., Yang, Y. Hoang, H.D., Vibbert, H., Kubagawa, H.M. and Miller, M.A. (2010) Insulin/FOXO signaling regulates ovarian prostaglandins critical for reproduction. Developmental Cell, 19, 858-871. doi:10.1016/j.devcel.2010.11.005
[53] Marcello, M.R. and Singson, A. (2010) Fetilization and the oocyte-to-embryo transition in C. elegans. BMB Reports, 43, 389-399. doi:10.5483/BMBRep.2010.43.6.389
[54] Singson, A., Mercer, K.B and L'Hernault, S.W. (1998) The C. elegansspe-9 gene encodes a sperm transmem-brane protein that contains EGF-like repeats and is required for fertilization. Cell, 93, 71-79. doi:10.1016/S0092-8674(00)81147-2
[55] Chatterjee, I., Richmond, A. Putiri, E. Shakes, D.C. and Singson, A. (2005) The Caenorhabditiselegansspe-38 gene encodes a novel four-pass integral membrane protein required for sperm function at fertilization. Development, 132, 2795-2808. doi:10.1242/dev.01868
[56] Kadandale, P., Stewart-Michaelis, A., Gordon, S. Rubin, J., Klancer, R. Schweinsberg, P. Grant, B.D., and Singson, A. (2005) The egg surface LDL receptor repeat-containing proteins EGG-1 and EGG-2 are required for fertilization in Caenorhabditiselegans. Current Biology, 15, 2222-2229. doi:10.1016/j.cub.2005.10.043
[57] Baird, S.E. and Seibert, S.R. (2012) Assortative fertilization in the Elegans-Group of Caenorhabditis. Evolution of Caenorhabditis and other nematodes. Cold Spring, Harbor, 2012.
[58] Sulston, J.E., Schierenberg, E., White, J.G. and Thomson, J.N. (1983) The embryonic cell lineage of Caenorhabdi-tiselegans. Developmental Biology, 100, 64-119. doi:10.1016/0012-1606(83)90201-4
[59] Powell-Coffman, J.A., Knight, J. and Wood, W.B. (1994) Onset of C. elegans gastrulation is blocked by inhibition of embryonic transcription with an RNA polymerase antisense RNA. Developmental Biology, 178, 472-483. doi:10.1006/dbio.1996.0232
[60] Seidel, H.S., Ailion, M., Li, J., van Oudenaarden, A., Rockman, M.V. and Kruglyak, L. (2011) A novel sperm-delivered toxin causes late-stage embryo lethality and transmission ratio distortion in C. elegans. PLoS Biology, 9, e1001115. doi:10.1371/journal.pbio.1001115
[61] Priess, J.R. and Hirsh, D.I. (1986) Caenorhabditiselegans morphogenesis: the role of the cytoskeleton in elongation of the embryo. Developmental Biology, 117, 156-173. doi:10.1016/0012-1606(86)90358-1
[62] Barstead, R.J. and Waterston, R.H. (1991) Vinculin is essential for muscle function in the nematode. The Journal of Cell Biology, 114, 715-724. doi:10.1083/jcb.114.4.715
[63] Topf, U. and Chiquet-Ehrismann, R. (2011) Genetic interaction between Caenorhabditiselegansteneurinten-1 and prolyl 4-hydroxylase phy-1 and their function in collagen IV-mediated basement membrane intergrity during late elongation of the embryo. Molecular Biology of the Celll, 22, 3331-3343. doi:10.1091/mbc.E10-10-0853
[64] Haldane, J.B.S. (1922) Sex ratio and unisexual sterility in hybrid animals. Journal of Genetics, 12, 101-109. doi:10.1007/BF02983075
[65] Laurie, C.C. (1997) The weaker sex in heterogametic: 75 years of Haldane’s Rule. Genetics, 147, 937-951.
[66] Hodgkin. J. (2005) Karyotype, ploidy, and gene dosage. In: The C. elegans Research Community, Ed., WormBook.
[67] Romer, S.H. (2005) The genetics of sexual transformation in Caenorhabditisbriggsae-Caenorhabditisremanei hybrids. M.Sc. Dissertation, Wright State University, Dayton.
[68] Seidel, H.S., Rockman, M.V. and Kruglyak, L. (2008) Widespread genetic incompatibility in C. elegans maintained by balancing selection. Science, 319, 589-594. doi:10.1126/science.1151107
[69] Ross, J.A., Koboldt, D.C., Staisch, J.E., Chamberlin, J.E., Gupta, B.P., Miller, R.D., Baird, S.E. and Haag, E.S. (2011) Caenorhabditisbriggsae recombinant inbred lines genotypes reveal inter-strain incompatibility and the evolution of recombination. PLoS Genetics, 7, e1002174. doi:10.1371/journal.pgen.1002174
[70] Hillier, L.W., Miller, R.D., Baird, S.E., Chinwalla, A., Fulton, L.A., Koboldt, D.C. and Waterston, R.H. (2007) Comparison of C. elegans and C. briggsae genome sequences reveals extensive conservation of chromosome organization and synteny. PLoS Biology, 5, e167. doi:10.1371/journal.pbio.0050167

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.