Atmospheric Pressure Plasma Treatment and Following Aging Effect of Chromium Surfaces

Abstract

The results of atmospheric pressure plasma treatments using diffuse coplanar surface barrier discharge (type of surface dielectric barrier discharge) on chromium surfaces are reported. A significant increase of surface wettability was observed after short plasma exposition. A quantitative value of surface wettability, i.e. the surface free energy, changed from 29 mJ/m2 to over 80 mJ/m2. In time, a hydrophobic recovery of the plasma treated surfaces was observed. Careful study by surface free energy measurements and x-ray photoelectron spectroscopy was performed to be able explaining the effects of plasma treatment. Studied samples were treated in air, oxygen and nitrogen plasma and aged in air and vacuum. Main reasons for increased wettability and aging effect are surface cleaning and transformations in chromium oxide. Additionally, generation of surface nitrate groups was found on the chromium surface as a result of plasma treatment in humid air.

Share and Cite:

Prysiazhnyi, V. (2013) Atmospheric Pressure Plasma Treatment and Following Aging Effect of Chromium Surfaces. Journal of Surface Engineered Materials and Advanced Technology, 3, 138-145. doi: 10.4236/jsemat.2013.32018.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] PlasmaTreat OpenAir. http://www.plasmatreat.com/plasma-technology/
[2] VITO PlasmaSpot. http://www.vitoplasma.com/en/30
[3] Corotec PlasmaJet. http://corotec.com/products/ plasmajet-specs.html
[4] T. Desmet, R. Morent, N. De Geyter, C. Leys, E. Schacht and P. Dubruel, “Nonthermal Plasma Technology as a Versatile Strategy for Polymeric Biomaterials Surface Modification: A Review,” Biomacromolecules, Vol. 10, No. 9, 2009, pp. 2351-2378. doi:10.1021/bm900186s
[5] R. Morent, N. De Geyter, J. Verschuren, K. De Clerck, P. Kiekens and C. Leys, “Non-Thermal Plasma Treatment of Textiles,” Surface & Coatings Technology, Vol. 202, No. 14, 2008, pp. 3427-3449. doi:10.1016/j.surfcoat.2007.12.027
[6] M. J. Shenton and G. C. Stevens, “Surface Modification of Polymer Surfaces: Atmospheric Plasma versus Vacuum Plasma Treatments,” Journal of Physics D: Applied Physics, Vol. 34, No. 18, 2001, pp. 2761-2768. doi:10.1088/0022-3727/34/18/308
[7] T. Suzuki, Y. Sawado and Y. Fujii, “Oxide Film Formation on Metal Surfaces by Atmospheric Pressure RF Barrier Discharge Plasmas,” Plasma Processes and Polymers Vol. 4, 2001, pp. 498-501. doi:10.1002/ppap.200731214
[8] T. Yamamoto, A. Yoshizaki, T. Kuroki and M. Okubo, “Aluminum Surface Treatment Using Three Different Plasma-Assisted Dry Chemical Processes,” IEEE Transactions on Industrial Applications, Vol. 40, No. 5, 2004, pp. 1220-1225.
[9] D. F. O’Kane and K. L. Mittal, “Plasma Cleaning of Metal Surfaces,” Journal of Vacuum Science and Technology, Vol. 11, No. 3, 1974, pp. 567-569. doi:10.1116/1.1318069
[10] B. R. Strohmeier, “Improving the Wettability of Aluminum Foil with Oxygen Plasma Treatments,” Journal of Adhesion Science Technology, Vol. 6, No. 6, 1992, pp. 703-718. doi:10.1163/156856192X01051
[11] M. Morra, E. Occhiello, R. Marola, F. Garbassi, P. Humphrey and D. Johnson, “On the Aging of Oxygen Plasma-Treated Polydimethylsiloxane Surfaces,” Journal of Colloid and Interface Science, Vol. 137, No. 1, 1990, pp. 11-24. doi:10.1016/0021-9797(90)90038-P
[12] M. Mantel and J. P. Wightman, “Influence of the Surface Chemistry on the Wettability of Stainless Steel,” Surface and Interface Analysis, Vol. 21, No. 9, 1994, pp. 595-605. doi:10.1002/sia.740210902
[13] J. R. Roth, Z. Y. Chen and P. P. Y. Tsai, “Treatment of Metals, Polymer Films, and Fabrics with a One Atmosphere Uniform Glow Discharge Plasma (OAUGDP) for Increased Surface Energy and Directional Etching,” Acta Metalugrica Sinica, Vol. 14, No. 6, 2001, pp. 391-407.
[14] C. O’Connell, R. Sherlock, M. D. Ball, B. Aszalos-Kiss, U. Prendergast and T. J. Glynn, “Investigation of the Hydrophobic Recovery of Various Polymeric Biomaterials After 172 nm UV Treatment Using Contact Angle, Surface Free Energy and XPS Measurements,” Applied Surface Science, Vol. 255, No. 8, 2009, pp. 4405-4413. doi:10.1016/j.apsusc.2008.11.034
[15] D. H. Shin, C. U. Bang, J. H. Kim, Y. C. Hong, H. S. Uhm, D. K. Park and K. H. Kim, “Treatment of Metal Surface by Atmospheric Microwave Plasma Jet,” IEEE Transactions on Plasma Science, Vol. 34, No. 4, 2006, pp. 1241-1246. doi:10.1109/TPS.2006.876486
[16] F. Tochikubo, S. Uchida, H. Yasui and K. Sato, “Numerical Simulation of NO Oxidation in Dielectric Barrier Discharge with Microdischarge Formation,” Japanese Journal of Applied Physics, Vol. 48, No. 7, 2009, pp. 076507. doi:10.1143/JJAP.48.076507
[17] K. Iskenderova, A. Chirokov, A. Gutsol, A. Fridman, L. Kennedy, K. D. Sieber, J. M. Grace, K. S. Robinson, “Simulation of NOx Formation in Dielectric Barrier Discharge,” 15th International Symposium on Plasma Chemistry, Orleans Symposium Proceedings, Vol. II, 2001, pp. 443-448.
[18] M. Cernák, L. Cernáková, I. Hudec, D. Kovácik and A. Zahoranová, “Diffuse Coplanar Surface Barrier Discharge and Its Applications for In-line Processing of Low-Added-Value Materials,” The European Physical Journal Applied Physics, Vol. 47, No. 2, 2009, p. 22806. doi:10.1051/epjap/2009131
[19] M. Cernák, J. Ráhel’, D. Kovácik, M. Simor, A. Brablec and P. Slavícek, “Generation of Thin Surface Plasma Layers for Atmospheric-Pressure Surface Treatments,” Contributions to Plasma Physics, Vol. 44, No. 5-6, 2004, pp. 492-495. doi:10.1002/ctpp.200410069
[20] D. Y. Kwok and A. W. Neumann, “Contact Angle Measurement and Contact Angle Interpretation,” Advances in Colloid and Interface Science, Vol. 81, No. 3, 1999, pp. 167-249. doi:10.1016/S0001-8686(98)00087-6
[21] Potassium Carbonate Handbook, Technical Data for Potassium Carbonate, Armand Products, Table 10. www.armandproducts.com/pdfs/k2so3P33_46.pdf
[22] A. Rudawska and E. Jacniacka, “Analysis for Determining Surface Free Energy Uncertainty by the Owen-Wendt Method,” International Journal of Adhesion and Adhesives, Vol. 29, No. 4, 2009, pp. 451-457. doi:10.1016/j.ijadhadh.2008.09.008
[23] A. M. Salvi, J. E. Castle, J. F. Watts and E. Desimoni, “Peak Fitting of the Chromium 2p XPS Spectrum,” Applied Surface Science, Vol. 90, No. 3, 1995, pp. 333-341. doi:10.1016/0169-4332(95)00168-9
[24] A. Nylund and I. Olefjord, “Surface Analysis of Oxidized Aluminium,” Surface and Interface Analysis, Vol. 21, No. 5, 1994, pp. 283-289. doi:10.1002/sia.740210504
[25] A. C. Gentile and M. J. Kushner, “Reaction Chemistry and Optimization of Plasma Remediation of NxOy from Gas Streams,” Journal of Applied Physics, Vol. 78, No. 3, 1995, pp. 2074-2085. doi:10.1063/1.360185

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.