1,25-Dihydroxyvitamin D3 effects on the regulation of the insulin receptor gene in the hind limb muscle and heart of streptozotocin-induced diabetic rats


In the present study, we examine the effects of the treatment with 1,25-dihydroxyvitamin D3 [150 IU/Kg (3.75 μg/Kg) once a day, for 15 days] to non-diabetic and streptozotocin-induced diabetic rats. The results indicate that treatment with 1,25-dihydroxyvitamin D3 had minor effects in non-diabetic rats. The same treatment in streptozotocin-induced diabetic rats, although it did not correct the hyperglycemia and hypoinsulinemia induced by the diabetes, caused other actions that could mean beneficial effects on the amelioration of diabetes e.g., it avoided body weight loss, increased calcium and phosphorus plasma levels, and corrected the over-expression of the insulin receptor mRNA species of 9.5 and 7.5 Kb present in the hind limb muscle and heart of these animals. These genomic 1,25-dihydroxyvitamin D3 effects could involve transcriptional mechanisms of repression mediated by vitamin D response elements in the rat insulin receptor gene promoter. Using computer analysis of this promoter, we propose the -249/-235 bp VDRE (5’GGGTGACCCGGGGTT3’) with a pyrimidine (T) in the (+7) position of the3’half-site as the best candidate for negative control by 1,25-dihydroxy-vitamin D3. In addition, posttranscriptional mechanisms of regulation could also be implicated. Thus, computer inspection of the5’untranslated region of the rat insulin receptor pre-mRNA indicated the presence of a virtual internal ribosome entry segment whereas the computer inspection of the3’untranslated region localized various destabilizing sequences, including various AU-rich elements. We propose that through these virtual cis-regulatory sequences, 1,25-dihydroxyvitamin D3 could control the translation and stability of insulin receptor mRNA species in the hind limb muscle and heart of diabetic rats.

Share and Cite:

Calle, C. , Maestro, B. and García-Arencibia, M. (2013) 1,25-Dihydroxyvitamin D3 effects on the regulation of the insulin receptor gene in the hind limb muscle and heart of streptozotocin-induced diabetic rats. American Journal of Molecular Biology, 3, 87-97. doi: 10.4236/ajmb.2013.32012.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] Norman, A.W. and Bouillon, R. (2010) Vitamin D nutritional policy needs a vision for the future. Experimental Biology and Medicine, 235, 1034-1045. doi:10.1258/ebm.2010.010014
[2] Sonoda, J., Pei, L. and Evans, R.M. (2008) Nuclear receptors: Decoding metabolic disease. FEBS Letters, 582, 2-9. doi:10.1016/j.febslet.2007.11.016
[3] Haussler, M.R., Whitfield, G.K., Haussler, C.A, Hsieh, J-C., Thompson, P.D., Selznick, S.H., Encinas Dominguez, C. and Jurutka, P.W. (1998) The nuclear vitamin D receptor: Biological and molecular regulatory properties revealed. Journal of Bone and Mineral Research, 13, 325-349. doi:10.1359/jbmr.1998.13.3.325
[4] Meyer, M.B. and Pike, J.W. (2012) Corepressors (NCoR and SMRT) as well as coactivators are recruited to positively regulated 1α,25-dihydroxyvitamin D3-responsive genes. The Journal of Steroid Biochemistry and Molecular Biology, in Press. doi:10.1016/j.jsbmb.2012.08.006
[5] Leal, M.A., Aller, P., Más, A. and Calle, C. (1995) The effect of 1,25-dihydroxyvitamin D3 on insulin binding, insulin receptor mRNA levels, and isotype RNA pattern in U-937 human promonocytic cells. Experimental Cell Research, 217, 189-194. doi:10.1006/excr.1995.1078
[6] Maestro, B., Molero, S., Bajo, S., Dávila, N. and Calle, C. (2002) Transcriptional activation of the human insulin receptor gene by 1,25-dihydroxyvitamin D3. Cell Biochemistry and Function, 20, 227-232. doi:10.1002/cbf.951
[7] Maestro, B., Campión, J., Dávila, N. and Calle, C. (2000) Stimulation by 1,25-dihydroxyvitamin D3 on insulin receptor expression and insulin responsiveness for glucose transport in U-937 human promonocytic cells. Endocrine Journal, 47, 383-391. doi:10.1507/endocrj.47.383
[8] Maestro, B., Dávila, N., Carranza, M.C. and Calle, C. (2003) Identification of a vitamin D response element in the human insulin receptor gene promoter. The Journal of Steroid Biochemistry and Molecular Biology, 84, 223-230. doi:10.1016/S0960-0760(03)00032-3
[9] Norman, A.W., Frankel, J.B., Heldt, A.M. and Grodsky, G.M. (1980) Vitamin D deficiency inhibits pancreatic secretion of insulin. Science, 209, 823-825. doi:10.1126/science.6250216
[10] Bourlon, P.M., Billaudel, B. and Faure-Dussert, A. (1999) Influence of vitamin D3 deficiency and 1,25-dihydroxyvitamin D3 on the novo insulin biosynthesis in the islets of the rat endocrine pancreas. Journal of Endocrinology, 160, 87-95. doi:10.1677/joe.0.1600087
[11] Takiishi, T., Gysemans, C., Bouillon, R. and Mathieu, C. (2010) Vitamin D and diabetes. Rheumatic Diseases Clinics of North America, 39, 419-446.
[12] Calle, C., Maestro, B. and García-Arencibia, M. (2008) Genomic actions of 1,25-dihydroxyvitamin D3 on insulin receptor gene expression, insulin receptor number and insulin activity in the kidney, liver and adipose tissue of streptozotocin-induced diabetic rats. BMC Molecular Biology, 9, 65-77. doi:10.1186/1471-2199-9-65
[13] Standaert, M.L., Schimmel, S.D. and Pollet, R.J. (1984) The development of insulin receptors and responses in the differentiating non-fusing muscle cell line BC3H-1. The Journal of Biological Chemistry, 259, 2337-2345.
[14] Eckel, J. and Reinauer, H. (1980) Characteristics of insulin receptors in the heart muscle: Binding of insulin to isolated muscle cells from adult rat heart. Biochemical and Biophysical Acta, 629, 510-521. doi:10.1016/0304-4165(80)90156-7
[15] Abdul-Ghani, M.A. and DeFronzo, R.A. (2010) Pathogenesis of insulin resistance in skeletal muscle. Journal of Biomedicine and Biotechnology, 2010, 1-19. doi:10.1155/2010/476279
[16] Ding, A. and Rodrigues, B. (2006) Role of changes in cardiac metabolism in development of diabetic cardiomyopathy. American Journal of Physiology Heart and Circulatory Physiology, 291, H1489-H1506. doi:10.1152/ajpheart.00278.2006
[17] Simpson, R.U., Tomas, G.A. and Arnold, A.J. (1985) Identification of 1,25-dihydroxyvitamin D3 receptors and activities in muscle. The Journal of Biological Chemistry, 250, 8882-8891.
[18] Boland, R., Norman, A., Ritz, E. and Hasselbach, W. (1985) Presence of a 1,25-dihydroxy-vitamin D3 receptor in chick skeletal muscle myoblasts. Biochemical and Biophysical Research Communications, 128, 305-311. doi:10.1016/0006-291X(85)91679-1
[19] Walters, M.R., Wicker, D.C. and Riggle, P.C. (1986) 1,25-Dihydroxyvitamin D3 receptors identified in the rat heart. Journal of Molecular and Cellular Cardiology, 18, 67-72. doi:10.1016/S0022-2828(86)80983-X
[20] Cabrera, R., Mayor, P., Fernandez-Ruiz, J. and Calle, C. (1988) Insulin binding and action on adipocytes from female rats with experimentally induced chronic hyperprolactinemia. Molecular and Cellular Endocrinology, 58, 167-173. doi:10.1016/0303-7207(88)90151-7
[21] Campión, J., Lahera, V., Cachofeiro, V., Maestro, B., Dávila, N., Carranza, M.C. and Calle, C. (1998) In vivo tissue specific modulation of rat insulin receptor gene expression in an experimental model of mineralocorticoid excess. Molecular and Cellular Biochemistry, 185, 177-182. doi:10.1023/A:1006871309864
[22] Más, A., Campión, J., Aller, P. and Calle, C. (1998) Epinefrine-induced reduction in insulin receptor mRNA level and stability in U-937 human promonocytic cells. Hormone and Metabolic Research, 30, 118-122. doi:10.1055/s-2007-978848
[23] García-Arencibia, M., Dávila, N., Campión, J. Carranza, M.C. and Calle, C. (2005) Identification of two functional estrogen response elements complexed with AP-1-likes sites in the human insulin receptor gene promoter. The Journal of Steroid Biochemistry and Molecular Biology, 94, 1-14. doi:10.1016/j.jsbmb.2004.12.020
[24] Calle, C., Aller, P. and García-Arencibia, M. (2011) Identification of virtual signal transducers and activations of transcription response elements in the human insulin receptor gene promoter. Computational Biology and Chemistry, 35, 333-335. doi:10.1016/j.compbiolchem.2011.10.001
[25] Colnot, S., Lambert, M., Blin, C., Tomasset, C. and Perret, C. (1995) Identification of DNA sequences that bind retinoid X receptor-1,25(OH)2D3-receptor heterodimers with high affinity. Molecular and Cellular Endocrinology, 113, 89-98. doi:10.1016/0303-7207(95)03618-H
[26] Tewari, M., Tewari, D.S. and Taub, R. (1991) Posttranscriptional mechanisms account for differences in steady state levels of insulin receptor messenger RNA in different cells. Molecular Endocrinology, 5, 653-660. doi:10.1210/mend-5-5-653
[27] Ozono, A., Liao, S.A., Kerner, R.A., Scott, J.W. and Pike, J.W. (1990) The vitamin D-responsive element in the human osteocalcin gene. The Journal of Biological Chemistry, 265, 21881-21888.
[28] Liu, S.M., Koszewski, N., Lupez M., Malluche, H.H., Olivera, A. and Russell, J. (1996) Characterization of a response element in the 5’-flanking region of the avian (chicken) PTH gene that mediates negative regulation of gene transcription by 1,25-dihydroxyvitamin D3 and binds the vitamin D3 receptor. Molecular Endocrinology, 10, 206-215. doi:10.1210/me.10.2.206
[29] Ling, J. (2011) Translation of human genome. Biochemistry and Analytical Biochemistry, 1, Editorial.
[30] Chatterjee. M. (2001) Vitamin D and genomic stability. Mutation Research, 475, 69-88. doi:10.1016/S0027-5107(01)00080-X
[31] Sato, Y., Iwamoto, J. Kanoko, T. and Satoh, K. (2005) Low-dose vitamin D prevents muscular atrophy and reduces falls and hip fractures in women after stroke: A randomized controlled trial. Cerebrovascular Diseases, 20, 187-192. doi:10.1159/000087203
[32] Endo, J., Inoue, D., Mitsui, T., Umaki, Y., Akaike, M., Yoshizawa, T., Kato, S. and Matsumoto, T. (2003) Deletion of vitamin D receptor gene in mice results in abnormal skeletal muscle development with deregulated expression of myoregulatory factors. Endocrinology, 144, 5138-5144. doi:10.1210/en.2003-0502
[33] Ceglia, L. and Harris, S.S. (2013) Vitamin D and its role in skeletal muscle. Calcified Tissue International, 92, 151-162. doi:10.1007/s00223-012-9645-y
[34] Alkharfy, K.M., Al-Daghri, N.M., Ahmed, M. and Yakout, S.M. (2012) Effects of vitamin D treatment, on skeetal muscle histology and ultrastructural changes in a rodent model. Molecules, 17, 9081-9089. doi:10.3390/molecules17089081
[35] Goldstein, B., Muller-Wieland, D. and Kahn, C.R. (1987) Variation in insulin receptor messenger ribonucleic acid expression in human and rodent tissues. Molecular Endocrinology, 1, 759-766. doi:10.1210/mend-1-11-759
[36] Brunetti, A., Maddux, B.A., Wong, K.Y. and Goldfine, I.D. (1989) Muscle cell differentiation is associated with increased insulin receptor biosynthesis and messenger RNA levels. Journal of Clinical Investigation, 83, 192-198. doi:10.1172/JCI113858
[37] Siddiqui, S.M.K., Chang, E., Li, J., Burlage, C., Zou, M., Buhman, K.K., Koser, S., Donkin, S.S. and Teegarden, D. (2008) Dietary intervention with vitamin D, calcium, and whey protein reduced fat mass and increased lean mass in rats. Nutrition Research, 28, 783-790. doi:10.1016/j.nutres.2008.08.004
[38] Wang, Y. and DeLuca H.F. (2011) Is the vitamin D receptor found in muscle? Endocrinology, 152, 354-363. doi:10.1210/en.2010-1109
[39] Bischoff, H.A., Borchers, M., Gudat, F., Duermueller, U., Theiler, R., Stähelin, H.B. and Dick, W. (2001) In situ detection of 1,25-dihydroxyvitamin D3 receptor in human skeletal muscle tissue. The Histochemical Journal, 33, 19-24. doi:10.1023/A:1017535728844
[40] Chen, S., Glenn, D.J., Christopher, W.N., Grigsby, L., Olsen, K. Nishimoto, M., Law, C.S. and Garden, D.G. (2008) Expression of the vitamin D receptor is increased in the hypertrophic heart. Hypertension, 52, 1106-1112. doi:10.1023/A:1017535728844
[41] Li, J., Byrne, M.E., Chang, E., Jiang, Y., Donkin, S.S., Buhman, K.K., Burgess, J.R. and Teegarden, D. (2008) 1α,25-dihydroxyvitamin D hydroxylase in adipocytes. Journal of Steroid Biochemistry and Molecular Biology, 112, 122-126. doi:10.1016/j.jsbmb.2008.09.006
[42] Del Pino-Montes, J., Benito, G.E., Fernandez-Salazar, M.P., Coveñas, R., Calvo, J.J., Bouillon, R. and Quesada, J.M. (2004) Calcitriol improves streptozotocin-induced diabetes and recovers bone mineral density in diabetic rats. Calcified Tissue International, 75, 526-532. doi:10.1007/s00223-004-0118-9
[43] Steiner, H., Oelz, O., Zahnd, G. and Froesch, E.R. (1970) Studies on islet cell regeneration, hyperplasia and intracellular interrelation in long lasting streptozotocin diabetes in rats. Diabetologia, 6, 558-564. doi:10.1007/BF00418221
[44] Davidson, M.B. and Kaplan, S.A. (1977) Increased insulin binding by hepatic plasma membranes from diabetic rats: Normalization by insulin therapy. The Journal of Clinical Investigation, 59, 22-30. doi:10.1172/JCI108618
[45] Kasuga, M.Y., Iwamoto, Y. and Kosaka, K. (1978) Insulin binding and glucose metabolism in adipocytes of streptozotocin-diabetic rats. The American Journal of Physiology, 235, E175-E182.
[46] Mac. Cain, T. and Haussler, M.R. (1977) Experimental diabetes reduces circulating 1,25-dihydroxyvitamin D in the rat. Science, 196, 1452-1454. doi:10.1126/science.141098
[47] Boland, J. (2005) Vitamin D and muscle. In: Feldman, D., Pike, J.W. and Glorieux F.H., Eds., Vitamin D, Elsevier Academic Press, San Diego, 883-897. doi:10.1016/B978-012252687-9/50058-9
[48] Hough, S., Russell, J.E., Teitelbaum, S.L. and Avioli, L.V. (1982) Calcium homeostasis in chronic streptozotocin-induced diabetes mellitus in the rat. The American Journal of Physiology, Endocrinology and Metabolism, 242, E451-E456.
[49] Beaulieu, C., Kestekian, R., Havrankova, J. and Gascon-Barre, M. (1993) Calcium is essential in normalizing intolerance to glucose that accompanies vitamin D depletion in vivo. Diabetes, 42, 35-43. doi:10.2337/diabetes.42.1.35
[50] Zineb, R., Zhor, B., Odile, W. and Marthe, R.-R. (1998) Distinct tissue specific regulation of vitamin D receptor in the intestine, kidney, and skin by dietary vitamin D. Endocrinology, 139, 1844-1852. doi:10.1210/en.139.4.1844
[51] Boland, R.L. (2011) VDR activation of intracellular signalling pathways in skeletal muscle. Molecular and Cellular Endocrinology, 347, 11-16. doi:10.1016/j.mce.2011.05.021
[52] Kent, J.O., Kimball, S.R. and Jefferson, L.S. (1991) Effect of diabetes and insulin treatment of diabetic rats on total RNA, poly (A)+ RNA and mRNA in skeletal muscle. The American Journal of Physiology, 260, C409-C416.
[53] Grzelkowska, K., Dardevet, D., Balage, M. and Grizard, J. (1999) Involvement of the rapamycin-sensitive pathway in the insulin regulation of muscle protein synthesis in streptozotocin-diabetic rats. The Journal of Endocrinology, 160, 137-145. doi:10.1677/joe.0.1600137
[54] Tahiliani, A.G. and McNeill, J.H. (1986) Diabetes-induced abnormalities in the myocardium. Life Sciences, 38, 959-974. doi:10.1016/0024-3205(86)90229-8
[55] Yu, W., Chen, C., Fu, Y., Wang, X. and Wang, W. (2010) Insulin signalling: A possible pathogenesis of cardiac hypertrophy. Cardiovascular Therapies, 28, 101-105. doi:10.1111/j.1755-5922.2009.00120.x
[56] Tozzo, E. and Desbuquois, B. (1992) Effect of STZ-induced diabetes and fasting on insulin receptor mRNA expression and insulin receptor gene transcription in rat liver. Diabetes, 41, 1609-1616. doi:10.2337/diabetes.41.12.1609
[57] Sechi, I.A., Griffin, C.A. Grady, E., Grunfeld, C., Kalinyak, J.E. and Schambelam, M. (1992) Tissue-specific regulation of insulin receptor mRNA in rats with STZ-induced diabetes mellitus. Diabetes, 41, 1113-1118. doi:10.2337/diabetes.41.9.1113
[58] Burant, C.F., Treutelaar, M.K. and Buse, M.G. (1986) Diabetes-induced functional and structural changes in insulin receptors from rat skeletal muscle. Journal of Clinical Investigation, 77, 260-270. doi:10.1172/JCI112285
[59] Block, N. and Buse, M.G. (1989) Effects of hypercortisolemia and diabetes on skeletal muscle insulin receptor function in vitro and in vivo. The American Journal of Physiology, 256, E39-E48.
[60] Almira, E.C., García, A.R. and Boshell, B.R. (1986) Insulin binding and glucose transport activity in cardiomyocytes of a diabetic rat. The American Journal of Physiology, 250, E402-E406.
[61] Wang, P.H., Almahfour, A., Giorgino, F., McCowen, K.C. and Smith, R.J. (1999) In vivo insulin signalling in the myocardium of streptozotocin-diabetic rats: Opposite effects of diabetes on insulin stimulation of glycogen synthase and c-Fos. Endocrinology, 140, 1141-1150. doi:10.1210/en.140.3.1141
[62] Ekladous, D., Mehdi, M.Z., Costa, M., Srivastava, A.K., Chiasson, J.-L. and Coderre, L. (2008) Tissue- and fibre-specific modifications of insulin-signalling molecules in cardiac and skeletal muscle of diabetic rats. Clinical and Experimental Pharmacology and Physiology, 35, 971-978. doi:10.1111/j.1440-1681.2008.04944.x
[63] Ouwens, D.M. and Diamant, M. (2007) Myocardial insulin action and the contribution of insulin resistance to the pathogenesis of diabetic cardiomyopathy. Archives of Physiology and Biochemistry, 113, 76-86. doi:10.1080/13813450701422633
[64] Zhou, Q.G., Hou, F.F., Gou, Z.J. Liang, M., Wang, G.B. and Zhang, X. (2008) 1,25-Dihydroxyvitamin D improved the free fatty-acid-induced insulin resistance in cultured C2C12 cells. Diabetes and Metabolism Research and Reviews, 24, 459-464. doi:10.1002/dmrr.873
[65] Spriggs, K.A., Cobbold, L.C., Ridley, S.H. Colwell, M., Bottley A., Bushell, M., Willis A.E. and Siddle, K. (2009) The human insulin receptor mRNA contains a functional internal ribosome entry segment. Nucleic Acids Research, 37, 5881-5893. doi:10.1093/nar/gkp623
[66] Lee, E.K. and Gorospe, M. (2010) Minireview: Post-transcriptional regulation of the insulin and insulin-like growth factor systems. Endocrinology, 151, 1403-1408. doi:10.1210/en.2009-1123
[67] Girgis, C.M. Clifton-Bligh, R.J., Hamrick, M.W., Holick, M.F. and Gunton, J.E. (2012) The roles of vitamin D in skeletal muscle: Form, function and metabolism. Endocrine Reviews, 34, 33-83. doi:10.1210/er.2012-1012

Copyright © 2020 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.