Fundamentals of Direct Inverse CFD Modeling to Detect Air Pollution Sources in Urban Areas


This paper presents the fundamentals of direct inverse modeling using CFD simulations to detect air pollution sources in urban areas. Generally, there are four techniques used for detecting pollution sources: the analytical technique, the optimization technique, the probabilistic technique, and the direct technique. The study discusses the potentialities and limits of each technique, where the direct inverse technique is focused. Two examples of applying the direct inverse technique in detecting pollution source are introduced. The difficulties of applying the direct inverse technique are investigated. The study reveals that the direct technique is a promising tool for detecting air pollution source in urban environments. However, more efforts are still needed to overcome the difficulties explained in the study.

Share and Cite:

Bady, M. (2013) Fundamentals of Direct Inverse CFD Modeling to Detect Air Pollution Sources in Urban Areas. Computational Water, Energy, and Environmental Engineering, 2, 31-42. doi: 10.4236/cweee.2013.22004.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] K. Yokoyama, “Our Recent Experiences with Sarin Poisoning Cases in Japan and Pesticide Users with References to Some Selected Chemicals,” Neurotoxicology, Vol. 28, No. , 2007, pp. 364-373. doi:10.1016/j.neuro.2006.04.006
[2] T. Okumura, N. Takasu, S. Ishimatsu, S. Miyanoki, A. Mitsuhashi, K. Kumada, et al., “Report on 640 Victims of the Tokyo Subway Sarin Attack,” Annals of Emergency Medicine, Vol. 28, No. 2, 1996, pp. 129-135. doi:10.1016/S0196-0644(96)70052-5
[3] M. Karter, “Fire Loss in the United States during 2002,” Fire Analysis & Research Division, National Fire Protection Association, Quincy, 2003.
[4] J. Friedr, “Stable Solution—Inverse Problems,” Vieweg & Sohn, Verlagsgesellschaft mbH, Braunschweig, 1978.
[5] A. Tarantola, “Inverse Problem Theory and Methods for Model Parameter Estimation,” Society for Industrial and Applied Mathematics, Philadelphia, 2004.
[6] O. Alifanov, “Inverse Heat Transfer Problems,” Springer Verlag, New York, 1994. doi:10.1007/978-3-642-76436-3
[7] S. Alapati and Z. J. Kabala, “Recovering the Release His tory of a Groundwater Contaminant Using a Non-Linear Least-Squares Method,” Hydrological Processes, Vol. 14, No. 6, 2000, pp. 1003-1016. doi:10.1002/(SICI)1099-1085(20000430)14:6<1003::AID-HYP981>3.0.CO;2-W
[8] N. K. Ala and P. A. Domenico, “Inverse Analytical Techniques Applied to Coincident Contaminant Distributions at Otis Air Force Base, Massachusetts,” Groundwater, Vol. 30, No. 2, 1992, pp. 212-218. doi:10.1111/j.1745-6584.1992.tb01793.x
[9] P. Kathirgamanathan, R. Mckibbin and R. I. Mclachlan, “Source Term Estimation of Pollution from an Instantaneous Point Source,” Research Letters in Information Mathematic Science, Vol. 3, 2002, pp. 59-67.
[10] M. Islam and G. Roy, “A Mathematical Model in Locating an Unknown Emission Source,” Water, Air, and Soil Pollution, Vol. 136, No. 1-4, 2002, pp. 331-345. doi:10.1023/A:1015210916388
[11] M. Islam, “Application of a Gaussian Plume Model to Determine the Location of an Unknown Emission Source,” Water, Air, and Soil Pollution, Vol. 112, No. 3-4, 1999, pp. 241-245. doi:10.1023/A:1005047321015
[12] S. M. Gorelick, B. E. Evans and I. Remson, “Identifying Sources of Groundwater Pollution: An Optimization Approach,” Water Resources Research, Vol. 19, No. 3, 1983, pp. 779-790. doi:10.1029/WR019i003p00779
[13] B. J. Wagner, “Simultaneously Parameter Estimation and Contaminant Source Characterization for Coupled Ground water Flow and Contaminant Transport Modeling,” Jour nal of Hydrology, Vol. 135, No. 1-4, 1992, pp. 275-303. doi:10.1016/0022-1694(92)90092-A
[14] P. S. Mahar and B. Datta, “Identification of Pollution Sources in Transient Groundwater Systems,” Water Re sources Management, Vol. 14, No. 3, 2000, pp. 209-227. doi:10.1023/A:1026527901213
[15] A. Bagtzoglou, D. Dougherty and A. Tompson, “Application of Particle Method to Reliable Identification of Groundwater Pollution Sources,” Water Resources Management, Vol. 6, No. 1, 1992, pp. 45-23. doi:10.1007/BF00872184
[16] M. F. Snodgrass and P. K. Kitanidis, “A Geo-Statistical Approach to Contaminant Source Identification,” Water Resources Research, Vol. 33, No. 4, 1997, pp. 537-546. doi:10.1029/96WR03753
[17] M. D. Sohn, P. Reynolds, N. Singh and A. J. Gadgil, “Rapidly Locating and Characterizing Pollutant Releases in Buildings,” Journal of the Air & Waste Management Association, Vol. 52, No. 12, 2002, pp. 1422-1432. doi:10.1080/10473289.2002.10470869
[18] S. Kato, P. Pochanart and Y. Kajii, “Measurements of Ozone and Non-Methane Hydrocarbons at Chichi-Jima Island, a Remote Island in the Western Pacific: Long Range Transport of Polluted Air from the Pacific Rim Region,” Atmospheric Environment, Vol. 36, No. 34, 2002, pp. 385-390.
[19] S. Kato, P. Pochanart, J. Hirokawa, Y. Kajii, H. Akimoto, Y. Ozaki, K. Obi, T. Katsuno, D. G. Streets and N. P. Minko, “The Influence of Siberian Forest Fires on Carbon Monoxide Concentrations at Happo, Japan,” Atmospheric Environment, Vol. 36, No. 2, 2002, pp. 385-390.
[20] S. Kato, Y. Kajii, R. Itokazu, J. Hirokawa, S. Koda and Y. Kinjo, “Transport of Atmospheric Carbon Monoxide, Ozone, and Hydrocarbons from Chinese Coast to Okinawa Island in the Western Pacific during Winter,” Atmospheric Environment, Vol. 38, No. 19, 2004, pp. 2975-2981. doi:10.1016/j.atmosenv.2004.02.049
[21] J. L. Wilson and J. Liu, “Backward Tracking to Find the Source of Pollution,” Water Management Risk Remediation, Vol. 1, 1994, pp. 181-199.
[22] J. Ferziger and M. Peric, “Computational Methods for Fluid Dynamics,” 3rd Edition, Springer Verlag Publisher, New York, 2002. doi:10.1007/978-3-642-56026-2
[23] S. Patankar, “Numerical Heat Transfer and Fluid Flow,” Hemisphere Publishing Corporation, New York, 1980.
[24] A. C. Bagtzoglou and J. Atmadja, “Marching-Jury Back ward Beam Equation and Quasi-Reversibility Methods for Hydrologic Inversion: Application to Contaminant Plume Spatial Distribution Recovery,” Water Resources Research, Vol. 39, No. 2, 2003, pp. SBH101-SBH1014. doi:10.1029/2001WR001021
[25] T. H. Skaggs and Z. J. Kabala, “Recovering the History of a Groundwater Contaminant Plume: Method of Qua sireversibility,” Water Resources Research, Vol. 31, No. 11, 1995, pp. 2669-2673. doi:10.1029/95WR02383
[26] T. Zhang and Q. Chen, “Identification of Contaminant Sources in Enclosed Environments by Inverse CFD Modeling,” Indoor Air, Vol. 17, No. 3, 2007, pp. 167-177. doi:10.1111/j.1600-0668.2006.00452.x
[27] D. Liu, F. Zhao and H. Wanga, “History Recovery and Source Identification of Multiple Gaseous Contaminants Releasing with Thermal Effects in an Indoor Environment,” International Journal of Heat and Mass Transfer, Vol. 55, No. 1-3, 2012, pp. 422-435. doi:10.1016/j.ijheatmasstransfer.2011.09.041
[28] L. Bram, “Towards the Ultimate Conservative Difference Scheme, V. A Second Order Sequel to Godunov’s Method,” Journal of Computational Physics, Vol. 32, No. 1, 1979, pp. 101-136. doi:10.1016/0021-9991(79)90145-1
[29] T. Tsai and M. Nabil, “A Comparative Study of Central and Upwind Difference Schemes Using the Primitive Variables,” International Journal for Numerical Methods in Fluids, Vol. 3, No. 3, 1983, pp. 295-305. doi:10.1002/fld.1650030308

Copyright © 2023 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.