Synthesis, Characterization and Charge-Discharge Properties of Layer-Structure Lithium Zinc Borate, LiZnBO3


Layer-Structure lithium zinc borate, LiZnBO3, is prepared by a solid state reaction of LiOH·H2O, ZnO, and H3BO3 at 1000°C for 10 h. Highly preferred orientation and a layer-structure are observed in the powder XRD patterns and the SEM images, respectively. The Rietveld analysis indicates a monoclinic unit cell with space group C2/c, and the lattice parameters are refined as a = 8.827 ?, b = 5.078 ?, c = 6.171 ?, and β = 118.86°. LiZnBO3 shows the capacity of 17 mAh/g between 1.3 V and 4.3 V (vs. Li/Li+) larger than ZnO.

Share and Cite:

I. Tsuyumoto and A. Kihara, "Synthesis, Characterization and Charge-Discharge Properties of Layer-Structure Lithium Zinc Borate, LiZnBO3," Materials Sciences and Applications, Vol. 4 No. 4, 2013, pp. 246-249. doi: 10.4236/msa.2013.44030.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] B. L. Ellis, K. T. Lee and L. F. Nazar, “Positive Electrode Materials for Li-Ion and Li-Batteries,” Chemistry of Materials, Vol. 22, No. 3, 2010, pp. 691-714. doi:10.1021/cm902696j
[2] A. K. Padhi, K. S. Nanjundaswamy and J. B. Goodenough, “Phospho-Olivines as Positive-Electrode Materials for Rechargeable Lithium Batteries,” Journal of the Electrochemical Society, Vol. 144, No. 4, 1997, pp. 1188-1194. doi:10.1149/1.1837571
[3] M. Yonemura, A. Yamada, Y. Takei, N. Sonoyama and R. Kanno, “Comparative Kinetic Study of Olivine LixMPO4(M = Fe, Mn),” Journal of the Electrochemical Society, Vol. 151, No. 9, 2004, pp. A1352-A1356. doi:10.1149/1.1773731
[4] D. Wang, H. Buqa, M. Crouzet, G. Deghenghi, T. Drezen, I. Exnar, N. H. Kwon, J. H. Miners, L. Poletto and M. Gratzel, “High-Performance, Nano-Structured LiMnPO4 Synthesized via a Polyol Method,” Journal of Power Sources, Vol. 189, No. 1, 2009, pp. 624-628. doi:10.1016/j.jpowsour.2008.09.077
[5] K. Amine, H. Yasuda and M. Yamachi, “Olivine LiCoPO4 as 4.8 V Electrode Material for Lithium Batteries,” Electrochemical and Solid-State Letters, Vol. 3, No. 4, 2000, pp. 178-179. doi:10.1149/1.1390994
[6] A. Nytén, A. Abouimrane, M. Armand, T. Gustafsson and J. O. Thomas, “Electrochemical Performance of Li2FeSiO4 as a New Li-Battery Cathode Material,” Electrochemical Communications, Vol. 7, No. 2, 2005, pp. 156-160. doi:10.1016/j.elecom.2004.11.008
[7] A. Nytén, S. Kamali, L. Haggstrom, T. Gustafsson and J. O. Thomas, “The Lithium Extraction/Insertion Mechanism in Li2FeSiO4,” Journal of Materials Chemistry, Vol. 16, No. 23, 2006, pp. 2266-2272. doi:10.1039/b601184e
[8] M. Nadherna, R. Dominko, D. Hanzel, J. Reiter and M. Gaberscek, “Electrochemical Behavior of Li2FeSiO4 with Ionic Liquids at Elevated Temperature,” Journal of the Electrochemical Society, Vol. 156, No. 7, 2009, A619-A626. doi:10.1149/1.3133183
[9] C. Sirisopanaporn, C. Masquelier, P. G. Bruce, A. R. Armstrong and R. Dominko, “Dependence of Li2FeSiO4 Electrochemistry on Structure,” Journal of the American Chemical Society, Vol. 133, No. 5, 2011, pp. 1263-1265. doi:10.1021/ja109695r
[10] V. Legagneur, Y. An, A. Mosbah, R. Portal, A. Le Gal La Salle, A. Verbaere, D. Guyomard and Y. Piffard, “LiMBO3 (M = Mn, Fe, Co): Synthesis, Crystal Structure and Lithium Deinsertion/Insertion Properties,” Solid State Ionics, Vol. 139, No. 1-2, 2001, pp. 37-46. doi:10.1016/S0167-2738(00)00813-4
[11] Y. Z. Dong, Y. M. Zhao, Z. D. Shi, X. N. An, P. Fu and L. Chen, “The Structure and Electrochemical Performance of LiFeBO3 as a Novel Li-Battery Cathode Material,” Electrochimica Acta, Vol. 53 No. 5, 2008, pp. 2339-2345. doi:10.1016/j.electacta.2007.09.050
[12] Y. Z. Dong, Y. M. Zhao, P. Fu, H. Zhou and X. M. Hou, “Phase Relations of Li2O-FeO-B2O3 Ternary System and Electrochemical Properties of LiFeBO3 Compound,” Journal of Alloys and Compounds, Vol. 461, No. 1-2, 2008, pp. 585-590. doi:10.1016/j.jallcom.2007.07.099
[13] A. Yamada, N. Iwane, Y. Harada, S. Nishimura, Y. Koyama and I. Tanaka, “Lithium Iron Borates as High-Capacity Battery Electrodes,” Advanced Materials Vol. 22, No. 32, 2010, pp. 3583-3587. doi:10.1002/adma.201001039
[14] J. C. Kim, C. J. Moore, B. Kang, G. Hautier, A. Jain and G. Ceder, “Synthesis and Electrochemical Properties of Monoclinic LiMnBO3 as a Li Intercalation Material,” Journal of the Electrochemical Society, Vol. 158, No. 3, 2011, pp. A309-A315. doi:10.1149/1.3536532
[15] A. Yamada, N. Iwane, S. Nishimura, Y. Koyama and I. Tanaka, “Synthesis and Electrochemistry of Monoclinic Li(MnxFe1-x)BO3: A Combined Experimental and Computational Study,” Journal of Materials Chemistry, Vol. 21, No. 29, 2011, pp. 10690-10696. doi:10.1039/c1jm11131k
[16] H. A. Lehmann and H. Schadow, “Bildung und Darstellung von gemischten Monoboraten des Types MeLiBO3, (Me = Co, Zn, Mn),” Zeitschrift für Anorganische und Allgemeine Chemie, Vol. 348, No. 1-2, 1966, pp. 42-49. doi:10.1002/zaac.19663480106
[17] O. S. Bondareva, M. A. Simonov, Y. K. Egorov-Tismenko and N. V. Belov, “The Crystal Structures of LiZn [BO3] and LiMn[BO3],” Soviet Physics Crystallography, Vol. 23, No. 3, 1978, pp. 269-271.
[18] A. Belkebir, P. Tarte, A. Rulmont and B. Gilbert, “Synthesis, Structural and Vibrational Analysis of LiMBO3 Orthoborates (M = Mg, Co, Zn),” New Journal of Chemistry, Vol. 20, No. 3, 1996, pp. 311-316.
[19] K. S. Chang, “LiZnBO3: Crystal Structure,” Journal of the Korean Chemical Society, Vol. 45, No. 19, 2001, pp. 251-255.
[20] X. Chen, C. Yang, X. Chang, H. Zang and W. Xiao, “Syntheses and Characterization of Two Alkali-Metal Zinc Borates, α-LiZnBO3 and Li0.48Na0.52ZnBO3,” Solid State Sciences, Vol. 11, No. 12, 2009, pp. 2086-2092. doi:10.1016/j.solidstatesciences.2009.08.024
[21] F. Izumi and T. Ikeda, “A Rietveld-Analysis Programm RIETAN-98 and Its Applications to Zeolites,” Materials Science Forum, Vol. 321-324, 2000, pp. 198-205. doi:10.4028/
[22] K. Momma and F. Izumi, “VESTA 3 for Three-Dimensional Visualization of Crystal, Volumetric and Morphology Data,” Journal of Applied Crystallography, Vol. 44, No. 6, 2011, pp. 1272-1276. doi:10.1107/S0021889811038970
[23] D. Wang, H. Li, S. Shi, X. Huang and L. Chen, “Improving the Rate Performance of LiFePO4 by Fe-Site Doping,” Electrochimica Acta, Vol. 50, No. 14, 2005, pp. 2955-2958. doi:10.1016/j.electacta.2004.11.045

Copyright © 2023 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.