Nanofiller Dispersion in Polymer Dielectrics

Abstract

Nanodielectric composites have been developed in recent years attempting to improve the dielectric properties such as dielectric constant, dielectric strength and voltage endurance. Among various investigations, nanoparticle dispersion was particularly emphasized in this work. General Electric Global Research Center in Niskayuna NY USA has investigated various nanoparticles, nanocomposites and nanocomposite synthesis methods intending to understand particle dispersion and their impact on the nanocomposite dielectric properties. The breakdown strength and microstructures of the nanocomposites containing different particles were studied for projects related to capacitor and electrical insulation technologies. The nanocomposite synthesis methods either employed commerical nanoparticles or utilized nanoparticles that were self-assembled (in-situ precipitation) in a matrix. Our investigations have shown that nanocomposites prepared with solution chemistry were more favorable for producing uniform dispersion of nanoparticles. Structural information of nanocomposites was studied with transmission electron microscopy and the interection between particles and matrix polymers were tentatively probed using dielectric spectroscopy. In these new class of materials high energy densities on the order of 15J/cc were achievable in nanocomposites.

Share and Cite:

D. Tan, Y. Cao, E. Tuncer and P. Irwin, "Nanofiller Dispersion in Polymer Dielectrics," Materials Sciences and Applications, Vol. 4 No. 4A, 2013, pp. 6-15. doi: 10.4236/msa.2013.44A002.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] A. S. Arico, P. Bruce, B. Scrosati, J.-M. Tarascon and W. Van Schalkwijk, “Nanostructured Materials for Advanced Energy Conversion and Storage Devices,” Nature Materials, Vol. 4, No. 5, 2005 pp. 366-377. doi:10.1038/nmat1368
[2] Y. Cao, P. Irwin and K. Younsi, “The Future of Nanodielectrics in the Electrical Power Industry,” IEEE Transactions on Dielectrics and Electrical Insulation, Vol. 11 No. 5, 2004, pp. 797-807.
[3] N. Guo, S. A. DiBenedetto, D. K. Kwon, L. Wang, M. T. Russell, M. T. Lanagan, A. Facchetti and T. J. Marks, “Supported Metallocene Catalysis for in Situ Synthesis of High Energy Density Metal Oxide Nanocomposites,” Journal of the American Chemical Society, Vol. 129, No. 4, 2007, pp. 766-767. doi:10.1021/ja066965l
[4] K. J. Nelson, “Dielectric Nanocomposite Polymers,” Springer, New York, 2009.
[5] E. Tuncer, G. Polizos, I. Sauers, D. R. James, A. R. Ellis and K. L. More, “Epoxy Nanodielectrics Fabricated with In-Situ and Ex-Situ Techniques,” Journal of Experimental Nanoscience, Vol. 7, No. 3, 2011, pp. 274-281. http://www.tandfonline.com/doi/abs/10.1080/17458080.2010.520137
[6] Y. Bai, Z.-Y. Cheng, V. Bharti, H. S. Xu and Q. M. Zhang, “High-Dielectric-Constant Ceramic-Powder Polymer Composites,” Applied Physics Letters, Vol. 76, No. 25, 2000, p. 3804.
[7] E. A. Cherney, “Silicone Rubber Dielectrics Modified by Inorganic Fillers for Outdoor High Voltage Insulation Applications,” Annual Report Conference on Electrical Insulation and Dielectric Phenomena, Nashville, 16-19 October 2005, pp. 1, 9.
[8] D. Q. Tan, Y. Cao and P. Irwin, “Nanostructured Dielectric Materials,” International Conference on Solid Dielectrics, Winchester, 8-13 July 2007, pp. 411-414.
[9] P. Kim, S. C. Jones, P. J. Hotchkiss, J. N. Haddock, B. Kippelen, S. R. Marder and J. W. Perry, “Phosphonic Acid-Modified Barium Titanate Polymer Nanocomposites with High Permittivity and Dielectric Strength,” Advanced Materials, Vol. 19, No. 7, 2007, pp. 1001-1005. doi:10.1002/adma.200602422
[10] E. Tuncer, “Structure/Property Relationship in Dielectric Mixtures: Application of the Spectral Density Theory,” Journal of Physics D: Applied Physics, Vol. 38, No. 2, 2005, pp. 223-234. doi:10.1088/0022-3727/38/2/006
[11] S. Takahashi and D. R. Paul, “Gas Permeation in Poly (Ether Imide) Nanocomposite Membranes Based on Surface-Treated Silica. Part 2: With Chemical Coupling to Matrix,” Polymer, Vol. 47, No. 21, 2006, pp. 7535-7547.
[12] E. Tuncer, I. Sauers, D. R. James, A. R. Ellis, M. P. Paranthaman, A. Goyal and K. L. More, “Enhancement of Dielectric Strength in Nanocomposites,” Nanotechnology, Vol. 18, No. 32, 2007, Article ID: 325704.
[13] E. Tuncer, I. Sauers, D. R. James, A. R. Ellis, M. Pace, K. L. More, S. Sathyamurthy, J. Woodward and A. J. Rondinone, “Nanodielectrics for Cryogenic Applications,” IEEE Transactions on Applied Superconductivity, Vol. 19, No. 3, 2009, pp. 2354-2358. doi:10.1109/TASC.2009.2018198
[14] E. Tuncer, A. J. Rondinone, J. Woodward, I. Sauers, D. R. James and A. R. Ellis, “Cobalt Iron-Oxide Nanoparticle Modified Poly(Methyl Methacrylate) Nanodielectrics: Dielectric and Electrical Insulation Properties,” Applied Physics A, Vol. 94, No. 4, 2009, pp. 843-852. doi:10.1007/s00339-008-4881-8
[15] R. A. Vaia and E. P. Giannelis, “Polymer Nanocomposites: Status and Opportunities,” MRS Bulletin, Vol. 26, No. 5, 2001, pp. 394-401. doi:10.1557/mrs2001.93
[16] S. H. Zhang, Y. Cao, D. Tan and P. Irwin, “Nanodielectric Ultem Films,” GE Internal Report, Publishing House GE Global Research Center, Niskayuna, 2006.
[17] Y. Cao, Q. Chen, D. Q. Tan and P. C. Irwin, “Nanostructured Dielectric Materials,” International Conference on Solid Dielectrics, Winchester, 8-13 July 2007, p. 163.
[18] E. Tuncer, A. J. Rondinone, J. Woodward, I. Sauers, D. R. James and A. R. Ellis, “Cobalt Iron-Oxide Nanoparticle Modified Poly(Methyl Methacrylate) Nanodielectrics,” Applied Physics A, Vol. 94, No. 4, 2009, pp. 843-852. doi:10.1007/s00339-008-4881-8
[19] G. Polizos, E. Tuncer, I. Sauers and K. L. More, “Properties of a Nanodielectric Cryogenic Resin,” Applied Physics Letters, Vol. 96, No. 15, 2010, Article ID: 152903. doi:10.1063/1.3394011
[20] S. Raetzke and J. Kindersberger, “The Effect of Interphase Structures in Nanodielectrics,” IEEJ Transactions on Fundamentals and Materials, Vol. 126, No. 11, 2006, pp. 1044-1049. doi:10.1541/ieejfms.126.1044
[21] L. M. Huang, J. Zhang, I. Kymissis and S. O’Biren, “High K Capacitors and OFET Gate Dielectrics from Self-Assembled BaTiO3 and (Ba,Sr)TiO3 Nanocrystals in the Superparaelectric Limit,” Advanced Functional Materials, Vol. 20, No. 4, 2010, pp. 554-560. doi:10.1002/adfm.200901258
[22] A. H. Sihvola, “Electromagnetic Mixing Formulas and Applications Ari Sihvola,” IEE Publication Series, IEE, London, 2000.
[23] D. Q. Tan, Q. Chen, Y. Cao, P. Irwin and S. Heidger, “Polymer Based Nanodielectric Composites for Capacitors,” Presentation at American Ceramic Society Electronic Materials and Applications, Orlando, Unpublished.
[24] M. G. Todd and F. G. Shi, “Characterizing the Interphase Dielectric Constant of Polymer Composite Materials: Effect of Chemical Coupling Agents,” Journal of Applied Physics, Vol. 94, No. 7, 2003, p. 4551.
[25] D. Q. Tan, Y. Cao, P. Irwin, K. Shuman and C. McTigue, “Interfacial Study of Nanoparticle Filled Polyetherimide,” Presentation at International Conference on Materials (IUMRS-ICM), July 2008.
[26] T. Tsurumi, T. Hoshina, H. Takeda, Y. Mizuno and H. Chazono, “Size Effect of Barium Titanate and Computer-Aided Design of Multilayered Ceramic Capacitors,” IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, Vol. 56, No. 8, 2009, pp. 1513-1522. doi:10.1109/TUFFC.2009.1214
[27] M. M. Abou Sekkina, “Effects of Temperature and Frequency Changes on the Dielectric Properties of Modified Chalcogenides,” Thermochimica Acta, Vol. 120, 1987, pp. 231-239.
[28] N. Tigau, V. Ciupina, G. Prodan, G. I. Rusu, C. Gheorghies and E. Vasile, “The Influence of Heat Treatment on the Electrical Conductivity of Antimony Trioxide Thin Films,” Journal of Optoelectronics and Advanced Materials, Vol. 5, No. 4, 2003, pp. 907-912.
[29] D. Q. Tan, “Intergrated High Energy Density Capacitors,” GE Internal Report, GE Global Research Center, Niskayuna, 2010.
[30] E. Tuncer, I. Sauers, D. R. James, A. R. Ellis, M. P. Paranthaman, T. Aytug, S. Sathyamurthy, K. L. More, J. Li and A. Goyal, “Electrical Properties of Epoxy Resin Based Nanocomposites,” Nanotechnology, Vol. 18, No. 2, 2007, Article ID: 025703. doi:10.1088/0957-4484/18/2/025703

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.